Minimally entangled typical thermal states with auxiliary matrix-product-state bases

Chia-Min Chung

Ludwig-Maximilians-Universität München

05 Dec/2019

TNSAA 2019-2020

Motivation: Finite temperature problems for frustrated or Fermionic systems

Example1: Hubbard model

Example2: Heisenberg model on triangular lattice

Outline

- Review the finite-temperature algorithms
 - Purification
 - Minimally entangled typical thermal states (METTS)
- METTS with auxiliary MPS
- Benchmark on XXZ model on triangular lattice

Purification is equivalent to the density matrix

Represent a mixed state by a pure state with enlarged Hilbert space •

rification
$$\Psi(T = \infty)$$
 singlet

pur

3

Imaginary time evolution on a purified MPS •

Purification is equivalent to the density matrix evolved from identity

(The same number of auxiliary sites are always enough)

Sample the state $|i\rangle$ with probability $\propto \langle i|e^{-eta \hat{H}}|i
angle/Z$

Given an arbitrary product state |i
angle

1. Time evolution, $|\phi_i\rangle=e^{-eta\hat{H}/2}|i
angle$

2. Collapse $|\phi_i\rangle$ to $|i'\rangle$ with probability $q_{i\to i'} = \frac{|\langle i'|\phi_i\rangle|^2}{\langle \phi_i|\phi_i\rangle}$

Detail balance

$$\frac{q_{i \to i'}}{q_{i' \to i}} = \frac{\frac{\left|\langle i' | \phi_i \rangle\right|^2}{\langle \phi_i | \phi_i \rangle}}{\frac{\left|\langle i | \phi_{i'} \rangle\right|^2}{\langle \phi'_i | \phi'_i \rangle}} = \frac{\langle i' | e^{-\beta \hat{H}} | i' \rangle}{\langle i | e^{-\beta \hat{H}} | i \rangle}$$

$$P_i = \langle i | e^{-\beta \hat{H}} | i \rangle / Z$$

= probability weight

METTS: sample $|i\rangle$ and $|j\rangle$ iteratively. Given an arbitrary product state $|i\rangle$ 1. Time evolution, $|\phi_i\rangle = e^{-\beta \hat{H}/2}|i\rangle$ 2. Collapse $|\phi_i\rangle$ to $|i'\rangle$ with probability $q_{i \rightarrow i'} = \frac{|\langle i' | \phi_i \rangle|^2}{\langle \phi_i | \phi_i \rangle}$ • Measure in the ensemble $\{|\phi_i\rangle\}$

Monte Carlo sum

Collapse
$$|\phi_i\rangle$$
 to $|i'\rangle$ with probability $q_{i\to i'} = \frac{|\langle i'|\phi_i\rangle|^2}{\langle \phi_i|\phi_i\rangle}$

Algorithm: collapse site by site

 $q_{i' \to i} = q_{i_1} q_{i_2} \cdots q_{i_N}; \quad |i\rangle = |i_1 i_2 \cdots i_N\rangle$

Collapsing probability

Required bond dimensions

- T→∞
 purification: 1
 METTS: 1 × lot of samplings
- $T \rightarrow 0$ purification: D^2 METTS: D (1 sampling)

Purification is more efficient at **high** and **intermediate** temperature, while **METTS** is more efficient at **low** temperature.

Quantum number and autocorrelation in METTS

- If $|i\rangle$ and \hat{H} conserve quantum number, the simulation will be stuck in the corresponding quantum number sector.
- For high T or small off-diagonal Hamiltonian, METTS algorithm will be stuck.

Collapse to orthogonal bases

[Stoudenmire, New J. Phys (2010)]

$$\mathbf{J} \in \begin{cases} \{\uparrow,\downarrow\} &, \text{ odd samples} \\ \{\rightarrow,\leftarrow\} &, \text{ even samples} \end{cases}$$

Good:

- Reduce autocorrelation time.
- Grand canonical ensemble.

Bad:

• Require MPS with no quantum number

We want:

- Use quantum number conserving MPS
- Reduce the autocorrelation

Key idea:

Remain some sites uncollapsed

The uncollapsed sites play roles as "presuming" the partition function

Auxiliary sites induce the quantum number fluctuation

- The whole AMPS still has good quantum number
- The quantum number can change in each step by $N_{\mathrm{aux}}\Delta Q$

L=64 Heisenberg chain at β =2 Starting from all down spins

 $N_{\rm aux} = 2$

• Collapsing algorithm

contract both the physical and auxiliary indices

Grand canonical METTS

• Measure:

contract both the physical the auxiliary sites

$$H = J \sum_{\langle ij \rangle} \left(S_i^x S_j^x + S_i^y S_j^y \right) + J_z \sum_{\langle ij \rangle} S_i^z S_j^z - B \sum_i S_i^z$$

- Sign problem in the quantum Monte Carlo
- We consider B=0, J_z=0.8

AMPS-METTS outperforms Sz-Sx METTS and purification at low temperature

β=0.2

Heisenberg model on triangular lattice

incipient 120 ° order $T_{I} \sim 0.2$ intermediate $T_{h} \sim 0.55$ paramagnetic M J J L J

Lei Chen, PRB 99, 140404(R) (2019)

0.3 * Rawl, et al. (a) • Cui, et al. Q Q D COOT COT -YC5 0.2 OS6 c_V YC6 □ TPO 0.1 ---HTSE × Pade T₁~0.2 T_h~0.55 0

The identities = "presum" of the partition function

Effects of auxiliary indices:

- Induce quantum number fluctuation
- Reduce autocorrelation time
- Narrow the probability distribution

METTS with AMPS bases

- Simulate grand canonical ensemble
- Increasing N_{aux} :
 - 1) Narrow distribution
 - 2) reduce autocorrelation time
 - 3) increase bond dimension
- Works better than $S_z S_x$ basis at low temperature
- Easy to be extend to SU(2)

Discussion

Approach the path-integral Monte Carlo

$$\operatorname{Tr} e^{-\beta \hat{H}} = \operatorname{Tr} (e^{-\tau \hat{H}} \cdots e^{-\beta \hat{H}})$$

$$\hat{1} = \sum_{i} |i\rangle \langle i|$$

Can update the configuration by collapsing

- Sign problem will come back
- Completely flexible in choosing bases

→ New hope?

Discussion

Example of possible bases:

Local rotation
 [D. Hangleiter, arXiv:1906.02309 (2019)]

Example of possible bases:

- Local rotation
 [D. Hangleiter, arXiv:1906.02309 (2019)]
- Multiple-site bases
 [Alet, et. al. PRL 117, 197203 (2016)]

For example, singlet-triplet basis is shown to be sign-problem free for J1-J2 model on two-leg ladder for J1=J2 (and some other region).

Example of possible bases:

- Local rotation
 [D. Hangleiter, arXiv:1906.02309 (2019)]
- Multiple-site bases
 [Alet, et. al. PRL 117, 197203 (2016)]
- MPS bases
- MERA-like bases

Example of possible bases:

- Local rotation
 [D. Hangleiter, arXiv:1906.02309 (2019)]
- Multiple-site bases
 [Alet, et. al. PRL 117, 197203 (2016)]
- MPS bases
- MERA-like bases
- Rotation of single particle basis [R. Levy, arXiv:1907.02076(2019)]

→ New hope???

