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2. CP violation in the Standard Model

The only source of CP violation within the SM is due to the non-zero value of the
phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix, to which all CP -violating
observables are related. The unitarity of the matrix leads to relations between
elements (e.g., V

ud

V ⇤
ub

+ V
cd

V ⇤
cb

+ V
td

V ⇤
tb

= 0), which are convenient to visualise as
a triangle in the complex plane. For the triangle (the Unitarity Triangle) where all
sides are of a similar magnitude, the angles are defined as

↵ ⌘ arg
h
� VtdV

⇤
tb

VudV
⇤
ub

i
, � ⌘ arg

h
�VcdV

⇤
cb

VtdV
⇤
tb

i
, � ⌘ arg

h
�VudV

⇤
ub

VcdV
⇤
cb

i
.

These angles can be measured using a variety of di↵erent CP violating observ-
ables covering both tree-level quark transitions, where the impact of New Physics
(NP) contributions is expected to be small12, and loop-level transitions, which are
sensitive to new higher-mass particles. One of the goals of studying the heavy-
quark sector is to compare measurements of these quantities to check for the overall
consistency of the CKM mechanism. Figure 1 shows the latest global fit of the
CKM matrix parameters to experimental measurements and Lattice QCD calcu-
lations13,14 showing that the SM is working well. However, there is still room for
NP contributions at the level of ⇠ 10%15,16, implying that a new set of precision
measurements is required.

Fig. 1. Global fit15 to the CKM matrix parameters, showing consistency between mea-
surements when interpreted in terms of SM quark transitions.

In the quark sector, the neutral mesons (P 0) can oscillate into their antiparticles

(P
0
), resulting in the physical states (P 0

H,L) being admixtures of the flavour eigen-

states: P 0
H = pP 0+qP

0
and P 0

L = pP 0�qP
0
, where p and q are complex coe�cients

(|p|2 + |q|2 = 1). The physical states have well defined masses and lifetimes, and
the parameters �m = mH � mL, �� = �L � �H and � = (�L + �H)/2 control the
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Motivation for HEP

smallest lattice spacing. When the physical volume is made
larger, more low-momentum (long-distance) modes are
added to the system. Based on these considerations, we
do not expect this added physics to be very sensitive to the
molecular dynamics step size. On the other front, the lattice
spacing is made smaller bymaking β larger. If the ultraviolet
gauge modes are viewed as free fields, the coefficient of the
gauge fields in the molecular-dynamics Hamiltonian is
proportional to β while the coefficient of the conjugate
momenta added for the molecular-dynamics time evolution
is held fixed. Thus, the frequency of the modes in molecular
dynamics time is proportional to β1=2. Strictly speaking, if
wewish to keep the fractional error fixedwhile increasing β,
we should reduce the step size as β−1=2. That dependence is
very weak—the square root of ln a. It turns out that this
scaling is more or less what was chosen empirically in going
from a ≈ 0.09 fm to 0.042 fm. The step size was decreased
from 0.0133 to 0.0125, or by about 6%, as β was increased
from 6.3 to 7.0, corresponding to β1=2 changing by 5%.

C. Correction for nonequilibrated topological charge

Because QCD simulations use approximately continuous
update algorithms, the topological charge Q evolves more
and more slowly as the lattice spacing becomes smaller. In
our finest ensembles, the evolution has slowed so much that
the distribution of Q has not been sampled properly. Time
histories of the topological charge in many of the HISQ
ensembles can be found in Ref. [68]. In Fig. 1, we show one
case, a ≈ 0.06 fm and physical m0

l, where the topological
charge is well equilibrated, and a second case, a ≈
0.042 fm and m0

l ¼ m0
s=5, where its distribution is clearly

not well sampled.
As first discussed in Ref. [69], one can study the

Q-dependence of observables in chiral perturbation theory
(χPT). Bernard and Toussaint [68] recently extended this
approach to heavy-light decay constants in the context of

heavy-meson χPT. We use their results to adjust the raw
decay-constant results to account at lowest order for the
incomplete sampling of Q in the small-a ensembles. The
amount of the adjustment is smaller than our statistical errors,
but not negligible in comparison to other systematic effects.
We summarize here the key results that allow us to make

this adjustment. Let ΦHx
¼ fHx

ffiffiffiffiffiffiffiffiffi
MHx

p
be the heavy-light

decay constant, in the normalization suitable for heavy
quarks. Let B denote either the meson mass M, the decay
constant f, or the combination ΦH. In a finite volume V at
fixed Q, the masses and decay constants obey [69,70].

BjQ;V ¼ Bþ 1

2χTV
B00

"
1 −

Q2

χTV

#
þ OððχTVÞ−2Þ; ð2:1Þ

where on the right-hand side B is the infinite-volume value,
properly averaged over Q, B00 is its second derivative with
respect to the vacuum angle θ, evaluated at θ ¼ 0, and χT is
the topological susceptibility

χT ¼ hQ2i
V

ð2:2Þ

in a fully-sampled, large-volume ensemble. For three sea
quarks with masses mu ¼ md ¼ ml and ms, light-meson
χPT for the valence-meson mass and decay constant
gives [68,70]

M00
xy ¼ −Mxy

m2
l m

2
s

2ðml þ 2msÞ2
1

mxmy
; ð2:3Þ

f00xy ¼ −fxy
m2

l m
2
s

4ðml þ 2msÞ2
ðmx −myÞ2

m2
xm2

y
; ð2:4Þ

where subscripts x and y denote flavor, and the meson mass
and decay constant are at θ ¼ 0. A similar calculation in
heavy-meson χPT gives [68]

Φ00
Hx

¼ −ΦHx

m2
l m

2
s

4ðml þ 2msÞ2
1

m2
x
; ð2:5Þ

M00
x ¼ −2B0λ1

m2
l m

2
s

ðml þ 2msÞ2
1

mx
− 2B0λ01

mlms

ml þ 2ms
; ð2:6Þ

wheremx is the mass of the light valence quark, and B0, λ1,
and λ01 are low energy constants, which are estimated in a
companion paper on heavy-light meson masses [36]. These
are the appropriate results even with 2þ 1þ 1 flavors of
sea quark, because the charmed sea quark decouples from
the chiral theory. Although the dependence of masses and
decay constants are usually small compared to our stat-
istical errors, we have been able to resolve them in some
of our well-equilibrated ensembles and confirm, within
limited statistics, that our data agree with these formulas
[68,71].

FIG. 1. Simulation time history of the topological charge in two
cases. The upper panel is for the physical quark mass run at
a ≈ 0.06 fm, and shows a case where the distribution of Q is well
sampled. The three sections of the trace correspond to three
separate runs with the same parameters. The lower panel, for the
m0

l ¼ m0
s=5 run at a ≈ 0.042 fm, shows a case where the time

history is not well sampled, and where we will apply the
correction factors discussed in Ref. [68].

A. BAZAVOV et al. PHYS. REV. D 98, 074512 (2018)
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I. INTRODUCTION

STh

[

ψ, ψ̄
]

=

∫

d2x
[

ψ̄iγµ∂µψ −m0ψ̄ψ −

g

2

(

ψ̄γµψ
)2
]

(1)
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strong-weak duality
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G(|a− b|) = ⟨ei(θ(a)−θ(b))⟩ (16)

G(r) = A r−T/2πK . (17)

G(r) = A′ e−r/ξ. (18)

Tc ∼ Kπ/2. (19)

g

T

gc ∼ −π/2. (20)

g ↔ κ
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〈

n
∏

i=1
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〉

ren.

=
∏

i<j

(µ |xi − xj |)
κiκj/2π , where

[

eiκiφ(x)
]

bare
= (Λ/µ)−κ2

i /4π
[

eiκiφ(x)
]

ren.
(5)

And similar power law for ψ̄ψ correlators.

The K-T phase transition at T ∼ Kπ/2 in the XY model.

The phase boundary at t ∼ 8π separates the phases where the cosine term becomes relevant or irrelevant.
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Quantities Thirring sine-Gordon XY

vector current  ̄�
µ

 
1

2⇡
✏
µ⌫

@
⌫

�

chiral condensate  ̄ 
⇤

⇡
cos�

Table 2: Correspondence between the massive Thirring model, sine-Gordon
model and the classical XY model.

4 Tensor Network methods

4.1 Singular Value Decomposition (SVD)

4.2 Matrix Product States (MPS)

4.3 Matrix Product Operators (MPO)

4.4 Density Matrix Renormalization Group (DMRG)

5 Preliminaries on the lattice calculation

In this section we will carefully investigate the lattice version of the Hamiltonian,
and the other physical quantities. We will first examine the discretization, and
then write down those quantities in the spin language by the Jordan-Wigner
transformation.

5.1 Staggered fermions in the Hamiltonian formalism

Let’s first consider the staggered fermion in the Hamiltonian formalism. The
di↵erence between the Hamiltonian and action is that the spin diagonalization
must be done in the di↵erent way. This is basically because of the additional
�
0

appeared in the Hamiltonian formalism, while in action �
0

was absorbed as
the part of  ̄.

Let’s look into an example of the free Dirac fermion in two dimensions

S[ ,  ̄] =

Z

d2x
⇥

 ̄i�µ@
µ

 �m
0

 ̄ 
⇤

. (27)

We first compute the conjugate momentum

⇧ =
�L

�(@
0

 )
=  ̄i�0 = i + . (28)

Therefore, the Hamiltonian reads to

H =

Z

dx (⇧@
0

 � L )

=

Z

dx
⇥

�i +�0�1@
1

 +m
0

 +�0 
⇤

.

(29)
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4

Thirring sine-Gordon XY

g
4π

2

t
− π

T

K
− π

vσlal−1al

Mσlal−1,al

G(|a− b|) = ⟨ei(θ(a)−θ(b))⟩ (16)

G(r) = A r−T/2πK . (17)

G(r) = A′ e−r/ξ. (18)

Tc ∼ Kπ/2. (19)

g

T

gc ∼ −π/2. (20)

g ↔ κ

Epair ∼ log (|r1 − r2|/a)

Sr =

(

cosθr
sinθr

)

(21)
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Thirring sine-Gordon XY

g 4⇡2

t � ⇡ T
K � ⇡

b
l�1 b

l�1

(T )
�l,�

0
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al�1,al,a
0
l�1,a

0
l

(T )
�lal�1al,�

0
la

0
l�1a

0
l

v
�lal�1al

M
�lal�1,al

G(|a� b|) = hei(✓(a)�✓(b))i (17)

G(r) = A r�T/2⇡K . (18)

G(r) = A0 e�r/⇠. (19)

T
c

⇠ K⇡/2. (20)

g

T

g
c

⇠ �⇡/2. (21)
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✓
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Employing Eq. (7), these β−functions can be rewritten in T and z, leading to

βT ≡ µ
dT

dµ
= −64π

z2

Λ4
,

βz ≡ µ
dz

dµ
=

1− 8πT

4πT
z −

64π

T 2Λ4
z3. (9)

These can be used to obtain the scaling behaviour of the Thirring model,

βg ≡ µ
dg

dµ
= −64π

m2

Λ2
,

βm ≡ µ
dm

dµ
=

−2(g + π
2 )

g + π
m−

256π3

(g + π)2Λ2
m3. (10)

III. DISCUSSION

From Eq. (10), it is clear that the value g = −π/2 plays a crucial role1. When g < −π/2, the RG evolution drives the
renormalised m to zero at low energy. This means m/Λ → 0, and then βg = 0. On the other hand, when g > −π/2,
the renormalised m exhibits the opposite behaviour, and will grow when the theory flows towards the IR limit. This
results in βg = 0, i.e., asymptotic freedom.

ACKNOWLEDGMENTS
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[1] D. B. Kaplan, J.-W. Lee, D. T. Son, and M. A. Stephanov, Phys. Rev. D80, 125005 (2009), arXiv:0905.4752 [hep-th].

1 As mentioned earlier in this note, g > −π is always required because of unitarity.

Massless Thirring model is a conformal field theory 5

FIG. 1: Qualitative feature of RG flows of the massive Thirring model based on Eqs. (7) and (8) in the regime where �⇡ < g

and m/⇤ <⇠ 0.01. The arrows present the flows towards the IR limit. The line m = 0 is a fixed line under RG transformation.
It is separated into two sectors, with g < ḡ⇤ being stable and g > ḡ⇤ being unstable.

It should be stressed that the above discussion is based on an expansion in terms of m/⇤. In this project, we
carry out non-perturbative study for the non-thermal phase structure of the massive Thirring model through lattice
simulations, employing the method of MPS. Our investigation can shed light on the scaling behaviour of the theory
beyond perturbation theory.

The rest of this paper is organized in the following way. Section II contains the formalism of the theory that
we simulate, and Sec. III gives details of the numerical implementation. In Sec. IV, we present main numerical
computations in this project. The outcome of these computations is used in Sec. V for addressing the phase structure,
the scaling behaviour, as well as the continuum limit of the massive Thirring model in 1+1 dimensions. We then
conclude in Sec. VI. Preliminary results of this work were presented in our contributions to the proceedings for the
Lattice conferences in Refs. [39, 40].

II. LATTICE FORMULATION AND THE CORRESPONDING SPIN MODEL

In this section, we first describe subtleties in constructing the Hamiltonian at the operator level in the continuum,
then discuss the latticization procedure of the system and the comparison with the quantum spin-chain model. In
our numerical implementation, we use the XXZ-model Hamiltonian in Sec. II B.

A. The Hamiltonian operator at quantum level and the staggered regularization

To perform lattice simulations using the MPS approach, we first have to obtain the corresponding Hamiltonian of
the classical action in Eq. (1). At the quantum level, the Hamiltonian operator cannot be related to the Lagrangian
through a straightforward Legendre transform. The main subtlety arises from quantum e↵ects that modify the current
conservation laws, leading to an ambiguity in defining the vector current that appears in the four-fermion operator
in Eq. (1)5. In the path integral formalism, these e↵ects are easily understood via analysing anomalies that result
from the fermionic measure in a field-redefinition procedure [99]. When working with the operator formalism, this
ambiguity can be accounted for by employing a non-local definition of the currents [100, 101]. As explained in the

5
In 1+1 dimensions, the vector and the axial-vector currents are related to each other.
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Higgs boson ~125 GeV 

Searched up here ~2 TeV 

?

The Higgs boson is light

Fermion favours ~1000 TeV ?
Need large anomalous dim to suppress FCNC
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Operator formalism and the Hamiltonian
• Operator formaliam of the Thirring model Hamiltonian  
 
 

• Staggering, J-W transformation (                      ):

projected to a sector of total spin

JW-trans of the total fermion number, 
Bosonise to topological index in the SG theory. 
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B. Simulation details

describe the simulations in details: choice of parameters (� and a⇥m0, as well as L/a and D). say that
this will allow us to investigate things such as the intinite-D and infinite-L/a limits. and then describe
how we prepare the initial tensors —- no infinite DMRG step, and we start from random values for
the components of the tensors.

In this work, the DMRG runs begin with a randomly-initialized MPS with D = 50. For higher Ds, the initial MPS
is prepared by growing the bond dimension of the previous runs. This can be accomplished by inserting a non-square
identity to each bond of the MPS. We gradually grow the bond dimension until it reaches 600. With several di↵erent
D’s, one can investigate the error of finite D systematically, and extrapolate the physical quantities to the infinite-D
limit. Similarly, we study the finite-size e↵ect with 4 system sizes, N = 400, 600, 800, 1000. The coupling �(g) is
chosen from the range �0.8  �  1.0, with 5 di↵erent masses, m̃0a = 0.0, 0.1, 0.2, 0.3, 0.4. We set � to be 100, and
target at the zero-charge sector by setting S

target

= 0.

In performing the search of the ground state using the DMRG method, we observe that the convergence of the
algorithm is slower in a region of parameter space than that in the rest. This shows that there may be a regime where
the theory becomes critical. Figure 1 shows examples of these fast- and slow-convergence cases. For the slow cases,
not only it takes more swepps for DMRG to converge, the the Jacobi-Davidson solver for obtaining the low eigen
modes of the Hamiltonian is also significantly more time-consuming.

IV. RESULTS FOR THE PHASE STRUCTURE

In this section, we present results that can be employed to probe the non-thermal phase structure of the Thirring
model. As discussed in the Introduction, the dual sine-Gordon model contains a phase where the dynammics is
described by free bosnic field theory with the presence of conformal symmetry, and the relevant phase transition is of
KT-type. We will show, using our numerical results, that this phase transition is realised in the Thirring model.
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FIG. 2: Fast (left) and slow (right) convergence of the variational algorithm in our simulations.

C. Simulation details

We describe now our simulation strategy. The variational search begins with a randomly-initialized MPS with bond
dimension D = 50. To have reliable results, we aim to observe convergence in D. With several di↵erent values of D,
one can investigate the truncation error systematically, and extrapolate the physical quantities to the infinite-D limit
(see Sec. IVB). Having results with D = 50, we gradually increase the bond dimension to 100, 200, 300, 400, 500
and finally 600. To do so, the size of the optimized tensors is increased to the desired D value, and the additional
components are initialized to zero or a small random number. This MPS is used as initial guess for the variational
procedure, which is run again until convergence. This is repeated, successively increasing the bond dimension, until
our final D = 600 is reached.

Similarly, we study finite size e↵ects, using four system sizes, N = 400, 600, 800, 1000, which allows us to perform
an infinite volume extrapolation. We cover a wide parameter range to study the phase structure. The coupling
�(g) is chosen from the range �0.9  �  1.0, with five di↵erent masses, m̃

0

a = 0.0, 0.1, 0.2, 0.3, 0.4. To study
the mass dependence in more detail, for some values of the coupling, we simulate also additional masses, m̃

0

a =
0.005, 0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.13, 0.16. We set the parameter of the penalty term, �, to 100, and target the
zero-charge sector (S

target

= 0).

In performing the search of the ground state using the variational method, we observe that the convergence of the
algorithm is slower in some regions of the parameter space, namely for m

0

a = 0 and, in the massive case, for large
negative �(g). This is consistent with a regime where the theory may become critical. Figure 2 shows examples
of these fast- and slow-convergence cases. For the slow cases, not only it takes more sweeps for the algorithm to
converge, but also iterations of the Jacobi-Davidson solver used to solve for the local tensors are also significantly
more time-consuming.

IV. NUMERICAL RESULTS FOR PROBING THE PHASE STRUCTURE

This section describes numerical computations for quantities that can be employed to probe the non-thermal phase
structure of the Thirring model. As indicated by the perturbative RGE’s, Eq. (7) and (8) in Sec. I, it is expected
that there are at least two phases in the massive Thirring model, with the  ̄ operator in Eq. (1) being relevant in
one of them and irrelevant in the other. Since this  ̄ operator is dual to the cos(�) term in the sine-Gordon theory
in Eq. (2), one envisages that in the regime where  ̄ is irrelevant in the Thirring model, the corresponding bosonic
theory is free. Furthermore, since we are investigating two-dimensional systems, and the sine-Gordon model is closely
related to the XY model [94], it is foreseen that the phase transition in the Thirring model is of BKT type. Below, we

different convergence properties observed
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also, we want to say that the non-zero � at m̃0 ! 0 does not mean that chiral symmetry is broken
(cite Witten). See Figs. 6 and 8. Discuss this with relation to RG:  ̄ is dual to cos� in sine-Gordon
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energy scales. This signals that cos� is relevant in one phase, and irrelevant in the other phase. As
Witten pointed out, the non-vanishing � is a signal of the BKT phase transition.
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FIG. 1. Fast (left) and slow (right) converenge of the DMRG algorithm in our simulations.

In the following, we demonstrate the calculations for the entanglement entropty, the fermion correlator, and the
fermion bilinear condensate. From our results of these four objects, we obtain knowledge of the phase structure that
is summarised in Sec. IVD.

we should say how we estimate the errors here. or say it somewhere else, eg, Sec. III.

A. Entanglement entropy
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with D being the bond dimension, and {�(0,n)
i

} denoting the set of singular values obtained by patitioning the N -site
one-dimensional system in two parts of sizes n and N � n, respectively. This entanglement entropy is a useful tool to
probe the critical points in quantum field theories. As demonstrated by Calabrese and Cardy [59, 60], at criticality,
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(n) exhibits the scaling behaviour,

S
N

(n) =
c

6
ln



N

⇡
sin

⇣⇡n

N

⌘

�

+ k , (29)

where c is the central charge, and k is a constant.

Figure 2 shows examples of the S
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(n) from our analysis. For simulations performed at m̃0a = 0, it is observed
that the Calabrese-Cardy scaling in Eq. (29) is valid for the resultant S

N

(n) at all values of explored �(g). On the
contrary, at m̃0a 6= 0, then say what we learned from this, and don’t forget to say that the central charge
is 1 in the conformal phase, and in the gapped phase the entanglement entropy is small.
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5

g

m

g ⇠ �⇡/2, Coleman’s instability point

g ⇠ �⇡/2

m̃0a = 0

Acknowledgments

The authosr thank people for very useful discussions. This work is supported by grants.

9

FIG. 2. First row: entanglement entropy for m̃0a = 0.0, at �(g) = �0.88 (left) and �(g) = 0.0 (right). Second row:
entanglement entropy for m̃0a = 0.2, at �(g) = �0.88 (left) and �(g) = 0.0 (right).

C. Fermion bilinear condensate

The fermion bilinear condensate,

� = �̂/a = h ̄ i, (30)

serves as a good probe to the phase structure.

comment on the fact that the D dependence is negligible. and then says Fig. 5 shows the infinite-
size extrapolation which is an important issue in computing the condensate. we observe that the N
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masses, m̃0a = 0.005, 0.02, 0.08, 0.3 for a 1000-site system.

steeply increases when moving deeper into the gapped phase. For smaller masses, this dependence is milder, again as
for the A parameter. However, in general, the relative systematic error of C is smaller than the one of A, allowing
to pinpoint the transition point a bit more precisely. (KC: This will be revised with new fits for the string
correlator. Because of the systematic e↵ect that A saturates below 1, we would conclude from this that
the transition for m̃

0

a = 0.3 is between -0.84 and -0.86, while the density-density correlator indicated
between -0.82 and -0.84. So this paragraph will still be revised.)

C. Fermion bilinear condensate

In order to obtain further information for the nature of the observed phase transition, we investigate the chiral
condensate,

�̂ = a� = a
⌦

�
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�
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*

�

�

�
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 ̄(n) (n)

�

�

�

�

�

+

, (39)

where  (n) and  ̄(n) are fermion fields defined on the spatial lattice site n. Under the JW transformation,

�̂
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N

*

�

�

�

�

�

N�1

X

n=0

(�1)nSz

n

�

�

�

�

�

+

. (40)

That is, the chiral condensate in the (1+1)-dimensional Thirring model corresponds to the staggered magnetisation
in the XXZ spin chain. Since Eq. (23) indicates that the anisotropy of this spin chain is never greater than one in
our study, the system can be in the Néel phase only when the staggered magnetic field is applied, i.e., when am̃

0

is non-vanishing in Eq. (22). For the corresponding quantum field theory, the Thirring model, this means that the
chiral condensate is expected to be zero in the massless limit. Such a feature is consistent with the fact that the
massless Thirring model in (1+1) dimensions is a conformal field theory. Furthermore, due to the presence of a
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FIG. 6. Density-density correlator Czz(x). Left panel: dependence of the parameter A and A1 for three types of exponential
ansatzes (36)-(38) on the coupling �(g). Right panel: dependence of the parameter ↵ and ⌘ for the power-law and power-
exponential fitting ansatzes (35)-(36) on the coupling �(g). Parameters: N = 1000, m̃0a = 0.02.

a proper choice of the fitting interval has to be made. To analyze the dependence of the fitting parameters on the
coupling �(g), we avoid the arbitrary choice of the fitting interval by adopting a systematic procedure, similar to the
one used e.g. in Ref. [9] (see the Appendix of this reference). We consider all possible fits in the interval x 2 [5, 49]
encompassing a minimum of 10 consecutive distances. Each fit is weighted with exp(��2/dof) and we build histograms
of the fitting parameters for each fitting ansatz. The central value for each fitting parameter in a given physical setup
(same system size, fermion mass and coupling) is extracted as the median of this distribution and the error as half of
the interval in which 68.3% of the weighted fits around the median are contained (corresponding to a 1-� deviation in
the case of an ideally Gaussian distribution). We note the obtained distributions are approximately Gaussian and the
thus extracted systematic error is in most cases a factor 5-10 larger than the error obtained from typical fits. Finally,
we add this systematic error to the one of the fit that best describes the data, defined as the one with the smallest
error among the fits with �2/dof  1.

The result of applying this procedure to the density-density correlator is shown in Fig. 6, again for fermion mass
m̃

0

a = 0.02. In the left panel, we show the A parameters extracted for di↵erent couplings. We note the A parameter
of the power-exponential fit becomes compatible with 1 somewhere between �(g) = �0.4 and �0.6. The expected
location of the BKT crossover is at �(g) ⇡ �0.7, however the smooth transition between the functional forms of
the power-law and power-exponential type of behavior makes it impossible to locate the BKT point at the current
level of precision. We expect that close to the critical point, there is only a small admixture of the exponential factor
to the power-law term, impossible to disentangle without much better precision. Further into the gapped phase, at
�(g) >⇠ �0.4, the exponential term becomes clearly visible and A is no longer consistent with 1. The value of A
drops when �(g) is increased and the exponent ⌘ of the power-law factor in the fitting ansatz increases towards less
negative values. Thus, the exponential decay becomes relatively more important deeper in the gapped phase. This is
also indicated by the smaller di↵erence of the parameter A and the parameter A

1

of the 3-exponential fit for positive
�(g), which would agree in the limit of purely exponential behavior.

In Fig. 7, we show the same kind of plot for a larger fermion mass, m̃
0

a = 0.3. In this case, the dependence of the
parameter A of the power-exponential fit is much steeper and A becomes compatible with 1 between �(g) = �0.82
and �0.84. This signals that the BKT transition moves towards more negative values of the coupling with increasing
fermion mass. For �(g) > �0.82, the system is clearly in the gapped phase, which is indicated also by �2/dof � 1
for the pure power-law fits. In contrast, such fits in the small fermion mass case are still reasonable until �(g) ⇡ 0,
as a consequence of our rather conservative error estimate procedure. We therefore conclude that the BKT crossover
is more pronounced for larger fermion masses. However, interestingly, the value of the exponent ⌘ of the power-
exponential fit is consistent with -2 for all couplings. A comparison of the coupling dependence of the parameter A for
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exponential fitting ansatzes (35)-(36) on the coupling �(g). Parameters: N = 1000, m̃0a = 0.02.

a proper choice of the fitting interval has to be made. To analyze the dependence of the fitting parameters on the
coupling �(g), we avoid the arbitrary choice of the fitting interval by adopting a systematic procedure, similar to the
one used e.g. in Ref. [9] (see the Appendix of this reference). We consider all possible fits in the interval x 2 [5, 49]
encompassing a minimum of 10 consecutive distances. Each fit is weighted with exp(��2/dof) and we build histograms
of the fitting parameters for each fitting ansatz. The central value for each fitting parameter in a given physical setup
(same system size, fermion mass and coupling) is extracted as the median of this distribution and the error as half of
the interval in which 68.3% of the weighted fits around the median are contained (corresponding to a 1-� deviation in
the case of an ideally Gaussian distribution). We note the obtained distributions are approximately Gaussian and the
thus extracted systematic error is in most cases a factor 5-10 larger than the error obtained from typical fits. Finally,
we add this systematic error to the one of the fit that best describes the data, defined as the one with the smallest
error among the fits with �2/dof  1.

The result of applying this procedure to the density-density correlator is shown in Fig. 6, again for fermion mass
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a = 0.02. In the left panel, we show the A parameters extracted for di↵erent couplings. We note the A parameter
of the power-exponential fit becomes compatible with 1 somewhere between �(g) = �0.4 and �0.6. The expected
location of the BKT crossover is at �(g) ⇡ �0.7, however the smooth transition between the functional forms of
the power-law and power-exponential type of behavior makes it impossible to locate the BKT point at the current
level of precision. We expect that close to the critical point, there is only a small admixture of the exponential factor
to the power-law term, impossible to disentangle without much better precision. Further into the gapped phase, at
�(g) >⇠ �0.4, the exponential term becomes clearly visible and A is no longer consistent with 1. The value of A
drops when �(g) is increased and the exponent ⌘ of the power-law factor in the fitting ansatz increases towards less
negative values. Thus, the exponential decay becomes relatively more important deeper in the gapped phase. This is
also indicated by the smaller di↵erence of the parameter A and the parameter A
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the di↵erence between �̂ in the infinite�D limit and that computed at the largest bond dimension, D = 600, in our
simulations. For the cases where this di↵erence is smaller than the chosen precision of the DMRG algorithm in this
work, ✏ = 10�7, we assign ✏ as the error for extrapolated �̂. The infinite�D extrapolation is then followed by the
procedure of taking the thermodynamic limit, N ! 1. Here again, if the error of the infinite�N �̂ is smaller than
10�7, we replace it with ✏. Figure 13 shows examples of such extrapolations for [�(g), am̃

0

] = [�0.9, 0.01]. In this
figure, results of the condensate obtained at D = 400, 500, 600 and N = 400, 600, 800, 1000 are used. It is apparent
that �̂ exhibits very mild dependence on both D and N in these plots. This mild dependence is in fact observed for
all choices of [�(g), am̃

0

] in the regime D � 400 and N � 400.

Figure 14 shows representative results for the chiral condensate in the limit of infinite bond dimension and system size.
In figure, we only demonstrate �̂ at three values of the four-fermion coupling constant, corresponding to �(g) = 0.2,
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FIG. 6. Density-density correlator Czz(x). Left panel: dependence of the parameter A and A1 for three types of exponential
ansatzes (36)-(38) on the coupling �(g). Right panel: dependence of the parameter ↵ and ⌘ for the power-law and power-
exponential fitting ansatzes (35)-(36) on the coupling �(g). Parameters: N = 1000, m̃0a = 0.02.

a proper choice of the fitting interval has to be made. To analyze the dependence of the fitting parameters on the
coupling �(g), we avoid the arbitrary choice of the fitting interval by adopting a systematic procedure, similar to the
one used e.g. in Ref. [9] (see the Appendix of this reference). We consider all possible fits in the interval x 2 [5, 49]
encompassing a minimum of 10 consecutive distances. Each fit is weighted with exp(��2/dof) and we build histograms
of the fitting parameters for each fitting ansatz. The central value for each fitting parameter in a given physical setup
(same system size, fermion mass and coupling) is extracted as the median of this distribution and the error as half of
the interval in which 68.3% of the weighted fits around the median are contained (corresponding to a 1-� deviation in
the case of an ideally Gaussian distribution). We note the obtained distributions are approximately Gaussian and the
thus extracted systematic error is in most cases a factor 5-10 larger than the error obtained from typical fits. Finally,
we add this systematic error to the one of the fit that best describes the data, defined as the one with the smallest
error among the fits with �2/dof  1.

The result of applying this procedure to the density-density correlator is shown in Fig. 6, again for fermion mass
m̃

0

a = 0.02. In the left panel, we show the A parameters extracted for di↵erent couplings. We note the A parameter
of the power-exponential fit becomes compatible with 1 somewhere between �(g) = �0.4 and �0.6. The expected
location of the BKT crossover is at �(g) ⇡ �0.7, however the smooth transition between the functional forms of
the power-law and power-exponential type of behavior makes it impossible to locate the BKT point at the current
level of precision. We expect that close to the critical point, there is only a small admixture of the exponential factor
to the power-law term, impossible to disentangle without much better precision. Further into the gapped phase, at
�(g) >⇠ �0.4, the exponential term becomes clearly visible and A is no longer consistent with 1. The value of A
drops when �(g) is increased and the exponent ⌘ of the power-law factor in the fitting ansatz increases towards less
negative values. Thus, the exponential decay becomes relatively more important deeper in the gapped phase. This is
also indicated by the smaller di↵erence of the parameter A and the parameter A

1

of the 3-exponential fit for positive
�(g), which would agree in the limit of purely exponential behavior.

In Fig. 7, we show the same kind of plot for a larger fermion mass, m̃
0

a = 0.3. In this case, the dependence of the
parameter A of the power-exponential fit is much steeper and A becomes compatible with 1 between �(g) = �0.82
and �0.84. This signals that the BKT transition moves towards more negative values of the coupling with increasing
fermion mass. For �(g) > �0.82, the system is clearly in the gapped phase, which is indicated also by �2/dof � 1
for the pure power-law fits. In contrast, such fits in the small fermion mass case are still reasonable until �(g) ⇡ 0,
as a consequence of our rather conservative error estimate procedure. We therefore conclude that the BKT crossover
is more pronounced for larger fermion masses. However, interestingly, the value of the exponent ⌘ of the power-
exponential fit is consistent with -2 for all couplings. A comparison of the coupling dependence of the parameter A for
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Chiral condensate
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Chiral condensate is not an order parameter

Extrapolated to infinite D and N

18

FIG. 13. Extrapolations of �̂ to the D ! 1 at N = 1000 (left) and to the N ! 1 limits (right) at [�(g), am̃0] = [�0.9, 0.01].
Notice that errors on the data points and the extrapolated result for the right panel are too small to be discernible on the plot.

FIG. 14. The dependence on am̃0 in the chiral condensate at �(g) = 0.2, -0.2 and -0.8. The left panel shows results at all
values of am̃0 in this work, while the right panel displays only those at am̃0  0.04. Notice that errors on the data points are
too small to be discernible on the plots.

-0.2 and -0.8. The condensate computed at other choices of �(g) exhibit the same feature as that in this figure.
According to results of the entanglement entropy and the correlators discussed in Sec. IVA and IVB, the theory is
in the gapped (massive) phase at am̃

0

6= 0 for � > �⇤ = �0.7, while it can be in the critical phase at � < �⇤.
We notice that, in Fig. 14, �̂ is non-vanishing at � = �0.8 for all data points with non-zero values of am̃

0

. Most of
these data points are indeed in the critical phase. This means the chiral condensate is not an order parameter for the
observed phase transition, and provides further evidence that this transition is of KT-type [66].

In Fig. 14, it can be seen that �̂ extrapolates smoothly to zero at vanishing am̃
0

. As mentioned above, this is in
accordance with the fact that the massless Thirring model in (1+1) dimensions is a conformal field theory. Further-
more, We find that the chiral condensate computed directly at am̃

0

= 0 is zero for all values of �(g). Given that
all simulations that lead to results in Fig. 14 are performed at finite system sizes, we carry out checks for am̃

0

= 0
calculations with infinite-size simulations by employing the variational uniform MPS (VuMPS) method [67]. These
checks confirm that �̂ obtained from simulations at am̃

0

= 0 indeed vanishes. Results of the VuMPS approach will
be published in a separate article where we will report our study of real-time dynamics associate with the KT phase
transition in the massive Thirring model [68].

Evidence for criticality from other quantitiesMassive phase
Massiv

e phase



Phase structure of the Thirring model
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FIG. 17: The central value of the parameter C for di↵erent combinations of the fermion mass m̃0a and coupling �(g).

FIG. 18: Non-thermal phase structure of the massive Thirring model from our numerical investigation. In addition to the data
points that can be identified to be in the gapped phase (blue stars) or at criticality (red circles), there are points (black squares)
where our simulations cannot determine which phase the theory is in. The grey area indicates the regime where we find these
“undetermined” point. The BKT phase transition must occur within this grey area.

above. It is obvious that the BKT transition occurs in this grey region, with the phase boundary described by a
function

�⇤(m̃0

a) = �[g⇤(m̃0

a)] , (46)
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Uniform MPS and real-time evolution
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Dynamical quantum phase transition
“Quenching” : Sudden change of coupling strength in time evolution 
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and 

Questions: Any singular behaviour?   Related to equilibrium PT?
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The Loschmidt echo and the return rate

&

c.f., the partition function and the free energy

In uMPS computed from the largest eigenvalue of the “transfer matrix"
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Observing DQPT

massive critical
real time t real time t

massivecritical

DQPT is a “one-way” transition…



DQPT and eigenvalue crossing

D-dependence in the crossing points



Bond-dim dependence in DQPT?



Conclusion and outlook

• Concluding results for phase structure  

• Exploratory results for real-time dynamics

KT-type transition in the massive Thirring model

DQPT observed

Relation to equilibrium KT phase transition?


