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Motivation

• The classification of 3d bosonic topological order (TO)& symmetry protected 
topological order(SPT) is well known (fixed point wave function ) 


• We would like to study quantum system (with topological order) in 3D 


But How to detect those topological order phase numerically? 

Numerical tool:  3D HOTRG , 3D CTM,… 

• To simplify our problem, we will consider fixed point wave function with 
deformation  (not from Hamiltonian)



Outline

Introduction : 
topological order  
2D and 3D  toric code


Numerical method:   
Tensor-Network scheme for modular S and T matrices (tnST) 
3D high order tensor renormalization group 

Numerical results: 
Case study:  , ,  topological order in 3D 
Dimensional Reduction to 2D  
3D AKLT (symmetry ) state  and deformation


Summary
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Introduction: Topological order

Beyond Landau (symmetry-breaking) paradigm 
eg. Fractional Quantum Hall, Spin Liquid, ... 

Topological order characterized by:  

Topology-dependent ground-state degeneracy ( )


Nontrivial excitations and statistics (usually in 2d) 

Long-range entanglement 


Potential application in fault-tolerant quantum computation

Ng

[Wen ’90]

[Tsui,Stomer,Gossard 
‘82,Laughlin ‘83, 
Anderson ‘73,...] 

[Wen and Niu ‘90 ]

g=0 g=1 g=2

Introduction 
Emergent topological order 

• (if chiral) protected gapless edge modes at boundary 

mutual statistics 

• exotic quasi-particle excitations 

self statistics 

|Ψۧ   → ݁௜ఝ|Ψۧ 
|Ψۧ   → |Ψۧ 

|Ψۧ   → െ|Ψۧ 

boson 
fermion 

anyon 

• ground state degeneracy depends on topology 

torus sphere 



Topological order:   Toric codeℤN

2D and  3D: spins reside on edges 
N -state degrees of freedom located on the link |q⟩i

Zn toric code
! 2D & 3D: spins reside on edges

! Ground states satisfy

! Degeneracy on 2,3-torus

2D: 3D:

! Representative ground states can be written as a tensor network:

@ each site: P @ each link (3 directions):

[Wen ‘91, Kitaev ‘01, Moradi & Wen ‘15]

" Deform toric code:  

The operators    and   as Zi Xi

Zi |q⟩i = ωq |q⟩i; Xi |q⟩i = |q − 1⟩i; ω = 2e2πi/N

The Hamiltonian of the   toric code ℤN

H = −
Je

2 ∑
s

(As + A†
s ) −

Jm

2 ∑
s

(Bp + B†
p)

Ground state satisfy 
  As |G . S.⟩ = Bp |G . S.⟩ = |G . S.⟩



Topological order:   Toric codeℤN

Degeneracy on 2,3-torus 
 2D:          3D:  #deg = N2 #deg = N3

Representative ground states can be written as a tensor network
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OY (hy), and OZ(hz) along the yz�, xz� and xy�plane,
respectively, to the state | i, and the action of ŝ and t̂
will transform these PEPO’s. Thus in carrying out the
wavefunction overlaps, we also need to update the matrix
product operators as we update the local tensor in the
procedure of HOTRG as shown in Fig. 3(c). After the
coarse-graining procedure of the local tensor, the coarse-
grained PEPO’s can be applied as shown in Fig. 3(d)(e)
before the tensor contraction to determine the modular
matrices .

The modular matrices can be evaluated and monitored
during the process of the tnST procedure (implemented
using HOTRG), which can broken down to the following
steps for convenience. (1) Creating the basis set.

(2) Simulating the modular transformations.
(3) Creating the double tensor and double PEPO’s.
(4) Coarse-graining.
(5) Taking trace for overlaps and modular matrices.

III. MODEL CONSTRUCTIONS AND
NUMERICAL RESULTS

We will use some examples to demonstrate how to
characterize and identity three-dimensional gapped topo-
logical ordered phases by using the modular matrices. We
demonstrate the usefulness of tnST approach by applying
to ZN topological order phases.

A. Three-dimensional ZN topological order phases
on cubic lattice

Let us begin by describing the construction of ZN wave
function on the 3D cubic system. Their Hamiltonian is
generalized from the two-dimensional toric code model
and discuss in detail in [Moradi and Wen ]. The tensor
product state (TPS) on the cubic lattice motivated by
the ZN topologically ordered phase is characterized by
the rank-six tensor, P↵,�,�,�,µ,⌫ with six internal indices
running over 0, 1, 2, ..., N � 1 on vertex and rank-three
tensor Gs

↵,�
with one physical index s running over the

N possible spin states on the link. The wave function is
then given by

| i =
X

si

tT r(
O

v

P
O

l

Gsi)|s1, s2, ...i, (11)

where v labels vertices and l link. Specially,

P↵,�,�,�,µ,⌫ =

(
1 if ↵+ � + � + � �+µ+ ⌫ = 0 mod N

0 otherwise,

(12)
and

Gs

↵,�
=

(
1 if s = ↵ = �

0 otherwise .
(13)

The rank-three tensor G behaves like a projector,
which essentially sets the internal index equal to the
physical index. We then consider a deformation Q �P

N�1
i=0 qi|iihi| and 0  qi  1, which apply to the phys-

ical indices, | (Q)i = Q ⌦ Q ⌦ ... ⌦ Q| i. At qi = 1,
(i = 0, 1, 2, ..., N � 1), this is exactly ZN topological or-
der phase. At q0 = 1 and qi = 0, (i = 1, 2, ..., N � 1), the
tensor represent a product state of all physical state 0.
At some critical point in parameters qi, the phase tran-
sition will occur. Here we consider q0 = 1 and qi = g2,
(i = 1, 2, ..., N � 1).
The ZN phase has a N3-fold ground-state degeneracy

on a torus, which corresponds to N3 di↵erent types of
quasiparticle excitations. Therefore, the corresponding
modular matrices will be of size N3 ⇥ N3. For simplic-
ity of the calculation we associate every vertex with six
matrices as shown in Fig. 2 and from the double tensor.
The norm of wave function represented by the double ten-
sor can then be represented as standard tensor product

form as Eq. (7), where the double tensor T↵
0
,�

0
,�

0
,�

0
,µ

0
,⌫

0

↵,�,�,�,µ,⌫

has eight inner indices ↵0,�0, �0, �0, µ0, ⌫0,↵,�, �, �, µ, ⌫ =
0, 1, ..., N � 1.
From the TPS with deformation, we can find the phase

transition point of the Z2 model as shown in Fig. 4 by us-
ing tnST scheme. The fixed point tensor structure might
be complicated but it is always possible to identify them.
We calculate S and T matrices and a basis independent
quantity given by the ratio X2/X1 [chen], where X1 and
X2 as shown in Fig. 5 are defined as follows,

X1 =
� X

↵,�,�

T↵,�,�,↵,�,�

�2
,

X2 =
X

↵,�,�,�,µ

(T↵,�,�,�,�,� ⇥ T�,µ,⌫,↵,µ,⌫). (14)

We find that when 0  g < 0.68, all components of
S and T matrices are 1, and X2/X1 = 1.0, and this
shows that the ground state is in the trivial phase. When
0.68  g < 1.0, the tensor belongs to the Z2 topologically
ordered phase, since we obtain nontrivial S and T matri-
ces as follows:

S =

0

BBBBBBBBB@

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

1

CCCCCCCCCA

, T =

0

BBBBBBBBB@

1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0

1

CCCCCCCCCA

,

(15)

and X2/X1 = 0.5. The S and T matrices obtained above
give us the modular transformations. Note that the ma-
trices are not in the canonical form (where, e.g., the T is
diagonal), but there is a procedure to make the T -matrix
diagonal and at the same time make S in the canonical
form. Then diagonalized T -matrix gives the self-statistics

@ each site:p

Pxx′ yy′ zz′ = 1

x − x′ + y − y′ + z − z′ = 0 (mod n)

only if

@ each link ( 3 direction )
Gs

α,β = δs,αδs,β

α β
s

➔ Deform toric  Gs
α,β = fs δs,αδs,βGround state: 

→ use the string operater to get other ground state
| ↵,�i = (Z1)↵(Z2)� | 0,0ie.g. 2d TC



[Hung & Wen ’14; Moradi & Wen ‘14] 

Modular transformation and matrices

SL(2,Z)
! SL(2,Z) generated by s & t

[90◦ rotation on square] [Dehn twist]

! Modular transformation on degenerate ground states
" modular matrices S (mutual statistics) & T (self-statistics)

" When rotation 120◦ is symmetry:
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matter physics but also in field such as high-energy and
biophysics. The finite temperature phase transition in
two-dimensional (2D) ferromagnetic q-state Potts model
have been discussed. For a classical model, it is always
possible to find a tensor network representation of the
partition function. We also prove that the tensor rep-
resentation of ZN model is mathematically equal to the
partition function of q-state Potts model represented by
tensor representation. In particular, we find that the
could be exist in the Z3 model. Our results show that
the power of tensor-based numerical method preserved
symmetry to classify the topological order.

The paper is organized as follows. In Sec. II, we re-
view the notion of topological order and symmetry pre-
served tensor renormalization group (SPTRG) which can
be used to identify intrinsic topological orders; Sec. III
discusses how the deformation can be applied to the ZN

topologically ordered model represented by the tensor
product state and how to use SPTRG to identity the
topological order. We present the phase diagram of the
ZN (N = 2, 3, 4, 5) model by evaluating the entangle-
ment entropy and the modular matrices. We also find
the ZN model is mathematically equivalent to the two-
dimensional classical q-state Potts model; in Sec. IV,
we evaluate the topological entanglement entropy, mod-
ular matrices and correlation function for Z3 model and
discuss the critical phase. in Sec. V, we conclude our
discussion and talk about open questions.

II. REVIEW

A. Topological order

Investigation of topological orders for spin models is
under intensive study in the recent years, partly due to
its relation to the ground state of high Tc superconduc-
tor, the so called spin liquid phase, and partly because of
the enlightenment of quantum information to character-
ize the ground states by quantum entanglement. These
studies lead to new classification schemes of the quan-
tum phases beyond the usual Landau-Ginzburg-Wilson
paradigm. Instead, it could be characterized by the
ground state degeneracy [15, 16] , quasiparticle statis-
tics [9], existence of edge states, topological entanglement
entropy [2, 3], entanglement spectrum [5], geometric en-
tanglement [4]. One typical example for all the above
characteristics of topological ordered state is toric code
model.

The most common method to identify a topologically
ordered phase is through the use of the topological en-
tanglement entropy. However, this method is not unique
as multiple topologically ordered phases can have the
same topological entanglement entropy. For example, the
toric code model and double-semion model have the same
quantum dimension. The topological order is defined
through the physical properties of the robust ground
state degeneracy and the geometric phases corresponding

to the modular transformation of the degenerate ground
state. A more unique characterization is to directly cal-
culate the modular matrices, or S and T -matrices of the
phase. This approach has been used to detect topo-
logically ordered phases in a number of recent works
[9, 10, 17]. Mathematically, the braiding statistics is en-
coded in the modular matrices. The modular matrices,
or S and T matrices, are generated respectively by the
90� rotation and Dehn twist on torus. The elements of S
matrix express the mutual statistics of the quasiparticles.
In other wards, the S-matrix elements correspond to the
phase obtained when we move one of the quasiparticles
in a closed path around another particle. The T matrix
express the twisting a quasiparticle wave function along
an axes by 360�.
To obtain the modular matrices, we need to first deter-

mine all the degenerate ground states {| ai}Na=1 of the
system. The S and T matrices can be given by deter-
mining the overlap between the operator, as follows:

h a|Ŝ| bi = e�↵SV+o(1/V )Sab

h a|T̂ | bi = e�↵TV+o(1/V )Tab, (1)

where Ŝ and T̂ are the transformations of the 90� rotation
and Dehn twist respectively on a torus with lattice size V
[18, 19]. ↵S and ↵T are non-universal constant. Sab and
Tab are universal unitary matrices. The information of
quasiparticles statistics and their fusion rule are encoded
in the S and T matrices.
In particular, form the gauge structure of tensor prod-

uct state (TPS) [20–23], we know the degenerate ground
state can be obtained by inserting the gauge transforma-
tion to TPS. The degenerate ground state can be labeled
as | (g, h)i with gauge transformations (g, h) which ap-
plied on the internal indices along two directions. This
means that the di↵erent degenerate ground state can be
transformed to each other by the gauge operators.

B. Symmetry preserved tensor renormalization
group (SPTRG)

An symmetry preserved tensor renormalization group
procedure exists for 2D quantum states based on the ten-
sor product representation

| i =
X

s1,s2,...sm...

tTr(T s1T s2 ...T sm ...)|s1s2...sm...i (2)

where T s

↵��...
is a local tensor with physical index s and

internal indices ↵�� etc. tTr denotes tensor contraction
of all the connected inner indices according to the un-
derlying lattice structure. The norm of the state can be
given by

h | i = tT r(T1T2T3...Tm...), (3)

where the local double tenser Ti can be formed by merg-
ing two layers tensors T and T ⇤ with the physical indices
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:degenerate ground state

Order parameter: from wave function overlap

Topological order characterized by its quasiparticle excitations- anyons 
(with nontrivial braiding statistics)

ie θ

Mathematically, the braiding statistics is encoded in the modular 
matrices.


The modular matrices, or S and T matrices, are generated respectively 
by the 90º rotation and Dehn twist on torus.



Previous work: 2D topological order with deformation

Start from a wave function in 2D with deformation 
⇒ By tuning a parameter to study the phase transition

How to describe a quantum state?  
Tensor product states  


What is the “order parameter”?  
Modular matrices 


How to calculate the observable?  
Higher order tensor renormalization group   

We propose a way -tnST “Tensor network 
scheme  for modular S and T matrices” to 
detect quantum phase transition numerically. 

[ Huang and Wei  2016]

 [F. Verstraete, Murg, & Cirac 2008]

  [Zhang,Grover, Turner, Oshikawa, & Vishwanath 2012]

[Xie, Chen, Qin, Zhu, Yang, & Xiang, 2012 ]
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(a)

T =

(b)

(c)

h (h0
x
, h0

y
)|

| (hx, hxhy)i

(d)

MH = m0⇤
H

⌦ mH =

MV = m0⇤
V

⌦ mV =

OV (h0
x
)

OV (hx)

OH(h0
y
)

OH(hx)OH(hy)

FIG. 5. (a)The tensor representation of overlap of the twist
ground states. (b)The double tensor structure. (c) The dou-
ble line structure of matrix product operators.

on the symmetry twists (hx, hy) as shown in Fig. 1 can
be used.

In practice, to obtain the (simulated) degenerate
ground states, we inset the matrix product operators
OV (hx) and OH(hy) along the y and x directions, re-
spectively, to the state | i, and the action of ŝ and t̂
will transform these MPO’s; see also Figs. 3 and 4. Thus
in carrying out the wavefunction overlaps, we also need
to update the matrix product operators as we update
the local tensor in the procedure of HOTRG. After the
coarse-graining procedure of the local tensor, the coarse-
grained MPO’s can be applied before the tensor con-
traction to determine the modular matrices. In brief,
with an appropriate choice of MPO’s, the same proce-
dure works for both topologically ordered phases and
symmetry-protected topological phases.

The modular matrices can be evaluated and monitored
during the process of the tnST procedure (implemented
using HOTRG), which can broken down to the following
steps for convenience.

(1) Creating the basis set . Given a ground state | i,
thread the symmetry twists for SPT phases (or gauge
transformations for topologically ordered phases) hx and
hy along y and x directions, respectively, by applying
the the matrix product operators OV (hx) = mV ⌦ mV ⌦

...mV and OH(hy) = mH ⌦ mH ⌦ ...mH , respectively,
and denote the resultant wavefunction as | (hx, hy)i; see
Fig. 5(a). This is the set of basis states that the modular
transformations ŝ and t̂ will act on.

(2) Simulating the rotation and the Dehn twist . As
remarked earlier, the symmetry or string operators that
are performed on the physical indices can be achieved
by appropriate symmetry operations to internal indices.
The rotation and Dehn twist can then be used to trans-
form the symmetry twists (or string operators) them-

selves, schematically denoted as
⌦
 (h0

x
, h0

y
)|t̂| (hx, hy)

↵
=

⌦
 (h0

x
, h0

y
)| (hx, hxhy)

↵
⌦
 (h0

x
, h0

y
)|ŝ| (hx, hy)

↵
=

⌦
 (h0

x
, h0

y
)| (hy, h�1

x
)
↵
.

The tensor representation of
⌦
 (h0

x
, h0

y
)| (hx, hxhy)

↵
is

shown in Fig. 5(a).

(d)

(e) (f)

(b) (c)(a)

(g)

FIG. 6. A HOTRG contraction of the tensor-network state
along (a) y (d) x axis on the square lattice. Step of contraction
and renormalization of two local tensor along (b) y-direction
and (e) x-direction and renormalization of inner symmetry
operators MH and MV in (c) (f). (g) At each step along x

and y direction, four sites are contracted into a single site.

(3) Creating the double tensor and double MPO’s.
Contract physical indices to from the double tensor T

as shown in Fig. 5(b) and form the generalized doubled
inner operators MV = m0⇤

V
⌦ mV and MH = m0⇤

H
⌦ mH

(see Fig. 5(c)(d)), which act on each bond along verti-
cal and horizontal twist lines, respectively, as shown in
Fig. 6(a).

When evaluating the modular T matrix:⌦
 (h0

x
, h0

y
)| (hx, hxhy)

↵
, the symmetry twists resulting

from both the ket and the bra can be lumped into a gen-
eralized double-layer matrix product operator defined by
OH(h0

x
, hx) = OV (h0

x
)⇤

⌦ OH(hx) = MH ⌦ MH ... ⌦ MH

and OV (h0
y
, hxhy) = OV (h0

y
)⇤

⌦ OV (hx)OV (hy) =
MV ⌦ MV ... ⌦ MV . The generalized double-layer MPO
for the modular S matrix can be expressed similarly. It is
these generalized MPO’s that need to be coarse-grained
as well.

(4) Coarse-graining . To coarse grain the local tensors
and generalized MPO’s, we contract the lattice along the
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where Ŝ and T̂ are the transformations of the 90� rotation
and Dehn twist respectively on a torus with lattice size V
[18, 19]. ↵S and ↵T are non-universal constant. Sab and
Tab are universal unitary matrices. The information of
quasiparticles statistics and their fusion rule are encoded
in the S and T matrices.
In particular, form the gauge structure of tensor prod-

uct state (TPS) [20–23], we know the degenerate ground
state can be obtained by inserting the gauge transforma-
tion to TPS. The degenerate ground state can be labeled
as | (g, h)i with gauge transformations (g, h) which ap-
plied on the internal indices along two directions. This
means that the di↵erent degenerate ground state can be
transformed to each other by the gauge operators.

B. Symmetry preserved tensor renormalization
group (SPTRG)

An symmetry preserved tensor renormalization group
procedure exists for 2D quantum states based on the ten-
sor product representation

| i =
X

s1,s2,...sm...

tTr(T s1T s2 ...T sm ...)|s1s2...sm...i (2)

where T s

↵��...
is a local tensor with physical index s and

internal indices ↵�� etc. tTr denotes tensor contraction
of all the connected inner indices according to the un-
derlying lattice structure. The norm of the state can be
given by

h | i = tT r(T1T2T3...Tm...), (3)

where the local double tenser Ti can be formed by merg-
ing two layers tensors T and T ⇤ with the physical indices



2D  Topological order phaseℤN

Wave function    |Ψ⟩ = ∑
c

|ψc⟩

 topological order phase:ℤ2

Deformed wave function

Q = |0ih0|+ g|1ih1|

S & T from wave function overlaps (string/membranes as “symmetry twists”): 
 ➔  use real space renormalization to obtain fixed-point values  
(as number of RG steps );  
(note: symmetry twists are also coarse-grained) 

nRG → ∞

7

vertical and then horizontal directions. This scheme of
coarse graining is shown in Fig. 6(a)(d)(g). First, two
sites are contracted into single site by applying the iso-
metric operators along the vertical direction as shown in
Fig. 6(b). The same isometric operator can also be used
to coarse grain the generalized inner symmetry operators
MV in Fig. 6(c). Then, we coarse grain similarly two sites
and generalized inner symmetry operators MH along the
horizontal direction as shown in 6 (e)(f). At each RG
step, four sites are contracted into one, and the number
of sites reduces by a factor of four.

(5) Taking trace for overlaps and modular matrices.
Finally, we insert the matrix product operators Mf

H
and

Mf

V
into the fixed-point double tensor T

f and take the
trace of all internal indices in the fixed-point tensor
(or the tensor after su�cient number of RG steps) to-
gether with the coarse-grained generalized inner symme-
try MPO’s to determine the each element of the modular
matrices. We note that each element is normalized by
the wavefunction norm square.

Let us remark that essentially the analytic calculations
of S and T for the fixed-point SPT wavefunctions in
Sec. II B follow this line of thoughts, except that there is
no need to do coarse-graining as the overlaps there can
be done exactly. The results there also provide a basis
for the numerics to compare with, especially away from
fixed-point wavefunctions.

IV. MODEL CONSTRUCTIONS AND
NUMERICAL RESULTS

We will use several examples to demonstrate how to
characterize and identity two-dimensional gapped quan-
tum phases by using the modular matrices. First, we
demonstrate the usefulness of our tnST approach by ap-
plying to two models that exhibit Z2 topological order:
the deformed toric-code and double-semion models in
Sec. IVA. These were previously studied in Ref. [20] us-
ing GSPTRG. The purpose of examining these here is
to illustrate that our tnST approach based on HOTRG
works without imposing the gauge symmetry during
the coarse-graining procedure. We then move on, in
Sec. IVB, to study symmetric and symmetry-breaking
phases and illustrate this with the Ising PEPS model.
We explain how to insert Z2 symmetry fluxes through
symmetry twists to detect the transition point and char-
acterize the two phases. This demonstrates that the mod-
ular matrices are also useful for identifying symmetry-
breaking phases and long-range order. In Sec. IV C we
construct models of ZN SPT states that are deformed
from the group-cohomology fixed-point wavefunctions
such that they remain symmetric under simple symmetry
action of ZN on physical spins through out all deforma-
tion. In particular, we study Z2 and Z3 cases, where dif-
ferent SPT phases are separated by a symmetry-breaking
phase with long-range order through continuous quantum
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FIG. 7. The Z2 toric code model: the trace of modular
matrices (a) S and (b) T as functions of parameter display a
phase transition at critical point gc = 0.802 under the renor-
malization flow.

phase transitions. In Sec. IV D we construct another Z2

model that shows a direct continuous transition from one
SPT phase (the trivial one) to a nontrivial SPT phase.

A. Topologically ordered phases

To test the validity of our tnST approach, we apply
it to two topological models previously studied by He,
Moradi and Wen using the gauge-symmetry-preserved
tensor renormalization method (GSPTRG). We demon-
strate that with our scheme using HOTRG without pre-
serving the gauge symmetry, accurate results can be ob-
tained.

The toric code phase. Let us first consider the 2D
Z2 toric code wavefunction with deformation g, which is
represented by the tensor product state Ai,j,k,l

↵,�,�,�
with four

physical indices i, j, k, l = 0, 1 and four virtual indices
↵, �, �, � = 0, 1 as shown in Fig. 8. The tensor’s entries
are given by

Ai,j,k,l

i,j,k,l
=

(
gi+j+k+l if i + j + k + l = 0mod 2,

0 otherwise.

(16)

8

FIG. 8. The tensor representation of 2D Z2 toric code wave-
function.

The parameter g, an e↵ective string tension, is used to
tune the property of this state from the topological phase
(when g close to 1) to a trivial phase (when g close to
0). Even though the wavefunction is continuous in g, as
we vary g the state must undergo a phase transition. In
Ref. [14, 20, 66], it was shown that the phase transition
occurs at g ⇡ 0.802, which separate the Z2 topologically
ordered phase from a trivial phase.

The MPO corresponds to the above family of wave-
functions (16) is generated by product of Z =

�
1 0
0 �1

�

to internal indices [20], independent of the parameter g.
With this we can now apply the HOTRG to coarse-grain
the local tensors and the matrix product operators which
can be inserted to TPS to obtain the degenerate ground
states. We find that for 0 < g  0.802 the modular
matrices are trivial,

S = T =

0

B@

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1

CA , (17)

which have only one nonzero eigenvalue 1. (We note that
the error is about 10�10 or smaller.) When 0.802 < g <
1, the state belongs to the Z2 topologically ordered phase,
since we obtain nontrivial S and T matrices as follows,

S =

0

B@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

CA , T =

0

B@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CA . (18)

The results agree as those in Ref. [20]. Note that in
the topological charge basis, the modular T matrice is
diagonal with each diagonal element of the form ei✓s that
gives the self-statisitcs of anyonic excitations. We can
diagonalize T by a unitary matrix M and at the same
time transform S to the same basis [22, 112]

T 0 =

0

B@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

1

CA , S0 =
1

2

0

B@

1 1 1 1
1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

1

CA . (19)

Our numerical results, using tr(Ŝ) and tr(T̂ ) as the
order parameters, are shown in Fig. 7. There, we also
show the values of the order parameters for a few di↵erent

FIG. 9. The double-semion model: the trace of modular
matrices (a) S and (b) T as functions of parameter display a
phase transition at critical point gc = 0.802 under the renor-
malization flow.

number of RG steps. We see that as we perform more
steps of HOTRG, the crossover-like curves become shaper
and shaper and they all cross at a transition with gc =
0.802, which separates the topological phase (g > gc)
that has the same modular matrices (18) from the non-
topological one (g < gc) with trivial modular matrices
(17).

The double-semion phase. The double-semion model
is another Z2 topologically ordered phase (i.e. the twisted
version of the toric code) with two semions of statistical
spin ✓s = ±⇡/2. The wavefunction of the double-semion
ground state is a superposition of closed-loop configu-
rations with di↵erent weight, | i =

P
c
(�1)Nloop |�ci,

where |�ci represents closed loops and the Nloop the total
number of loops for a given configuration �c. This state
and its deformation (parameterized by g) can described
by a tensor product state [83, 84] that is characterized
by the rank-eight tensor P↵↵0��0��0��0 , with internal in-
dices running over {0, 1} on the vertex and the rank-five
tensor Gs

↵↵0��
with one physical index s running over the

possible spin states {0, 1} [20]:

| (g)i =
X

si

tT r(⌦vP ⌦l Gsi)|s1, s2, ....i, (20)

where v labels vertices and l links. Moreover, the projec-

Topological ordertrivial phase
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cult to calculate the overlap directly or the contraction of
the whole tensor network in two and higher dimensions.

Renormalization group procedure will help the di�-
culty. We employ the HOTRG to determine the norm
and the expectation values. However, to simulate the de-
generate ground states, we inset the string operators hx

and hy along the y and x direction, respectively to state.
We need to update the string operator as we update the
local tensor.

The modular matrices can be evaluated and monitored
during the process of the HOTRG steps by performing
several steps:

(1) Threading the symmetry twists line hx and hy

along y and x direction corresponding to inserting in-
ner symmetry operator (or we call matrix product op-

erator (MPO) ) hx = my ⌦ my ⌦ ...my and hy =
mx ⌦mx ⌦ ...mx, respectively into the wave function as
| (hx, hy)i. Threading the symmetry twists line h

0
x and

h
0
y along y and x direction, respectively into the wave

function as | (h0
x, h

0
y)i.

(2) Performing the rotation and the Dehn twist oper-
ators on the ground-state wave function. The operators
performing on the physical indices can be achieved or
replaced by appropriate gauge operations to internal in-
dices,

⌦
 (h0

x, h
0
y)|T̂ | (hx, hy)

↵
=

⌦
 (h0

x, h
0
y)| (hx, hxhy)

↵

⌦
 (h0

x, h
0
y)|Ŝ| (hx, hy)

↵
=

⌦
 (h0

x, h
0
y)| (hy, h

�1
x )

↵
.

For example, the 4-by-4 T -matrix for the Z2 toric code
is given as follows:

T =

0

BB@

⌦
 (I, I)| (I, I)

↵ ⌦
 (I, I)| (I,Z)

↵ ⌦
 (I, I)| (Z,ZZ)

↵ ⌦
 (I, I)| (Z, I)

↵
⌦
 (I,Z)| (I, I)

↵ ⌦
 (I,Z)| (I,Z)

↵ ⌦
 (I,Z)| (Z,ZZ)

↵ ⌦
 (I,Z)| (Z, I)

↵
⌦
 (Z, I)| (I, I)

↵ ⌦
 (Z, I)| (I,Z)

↵ ⌦
 (Z, I)| (Z,ZZ)

↵ ⌦
 (Z, I)| (Z, I)

↵
⌦
 (Z,Z)| (I, I)

↵ ⌦
 (Z,Z)| (I,Z)

↵ ⌦
 (Z,Z)| (Z,ZZ)

↵ ⌦
 (Z,Z)| (Z, I)

↵

1

CCA , (8)

where the string operator Zq = Z
q ⌦ Z

q ⌦ ...Z
q; q = 0, 1

and Z is a operator Z =
�
1 0
0 �1

�
. The | (I, I)i is our

reference ground state which can be represented by the
tensor product state

(3) Contracting physical indices to from the double
tensor T and form generalized inner operators Mx =
m

0
x ⌦mx and My = m

0
y ⌦my acted on each bond along

vertical and horizontal direction, respectively shown in
Fig. 1 (a). In order to determine the elements of mod-
ular matrices, we need to calculate the overlap of two
wave functions inserted the string operators. To take a
Z2 toric code as an example : In Equ. 8, for each element⌦
 (h0

x, h
0
y)| (hx, hxhy)

↵
, the generalized string operator

can be given by Hx = h
0
x ⌦ hx = Mx ⌦Mx... ⌦Mx and

Hy = h
0
y ⌦ hxhy = My ⌦My...⌦My.

(4) To coarse grain, we contract the lattice along the
vertical (y axis) and horizontal (x axis) direction. This
scheme of coarse graining is shown in Fig. 1. At each RG
step, two sites are contracted into single site by applying
the unitary operators as shown in Fig. 1 (b) (d). The
unitary operator also can be used to coarse grain the
generalized inner operators in Fig. 1 (c) (e).

(5) Finally, we insert the string operators M
(n)
x and

M
(n)
y into the fixed point double tensor T(n) and trace

all internal indices of the fixed point tensor to determine
the each element of the whole modular matrices.

IV. NUMERICAL RESULTS

A. Topological order phase

We now demonstrate how to apply the algorithm dis-
cussed above to a concrete example of an topological or-
der. Let consider the 2D Z2 toric code wave function
with deformation g represented by the tensor product
state A

i,j,k,l
↵,�,�,� with four physical indices i, j, k, l = 0, 1

and four virtual indices ↵,�, �, � = 0, 1. Its entires are
given by

A
i,j,k,l
i,j,k,l =

(
g
i+j+k+l if i+ j + k + l = 0 mod2,

0 otherwise.
(9)

The parameter g is used to tune the property of this
state from the topological phase to a trivial phase. As we
vary g, the state will go through a phase transition, and
in Ref. [24, 37, 38], it showed that the phase transition
occurs at g ⇡ 0.802, which separate the Z2 topological
order phase from the phase of product state.
We now apply the HOTRG to corse-grain the local

tensors and the string operators which can be inserted
to TPS to obtain the degenerate ground states. We find
while at 0 < g  0.802, we obtain the trivial modular
matrices, as follows:

S = T =

0

B@

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1

CA , (10)

Ground-state degeneracy & modular matrices/invariants believed to be 
sufficient to characterize topological order 

[ Huang and Wei  2016]



Topological invariant (Modular Matrices) in three 
dimension

Modular matrices S and T are representations using degenerate ground 
states ➔ also give exchange/braiding statistics of anyonic excitations  
Si, j = ⟨Ψi | ̂s |Ψj⟩ Ti, j = ⟨Ψi | ̂t |Ψj⟩

SL (3,  ) group : generated by a  and ℤ ̂s ̂t

Ground states: membrane 
operators  acting on 

reference G.S.  

{ĥx, ĥy, ĥz}

|Ψj⟩ = ĥxĥyĥz |Ψ0⟩

Detecting and identifying 3D topological ordered phases with modular matrices via
tensor-network methods

Ching-Yu Huang1 and Tzu-Chieh Wei1

1C. N. Yang Institute for Theoretical Physics and Department of Physics and Astronomy,
State University of New York at Stony Brook, NY 11794-3840, United States

(Dated: April 15, 2016)

Topologically ordered quantum systems have robust physical properties, such as quasiparticle
statistics, and ground-state degeneracy, which do not depend on the microscopic details of the
Hamiltonian. We consider three-dimensional topological phase transitions under a deformation
such as an e↵ective plane tension on a ZN topological state. In this approach modular matrices S
and T can be obtained and used as order parameters to characterize the topological properties of
the phase and determine phase transitions. From a mapping to a classical three-dimensional Potts
model on the square lattice, the critical string tension, at which the transition to a topologically
trivial phase takes place, can be obtained analytically and agrees with the numerically determined
value. Such a transition can be generalized to a ZN topological model under a string tension and
determined in the same way.

I. INTRODUCTION

3D topological order phases
- property
- theory
- numerical calculation
summarize our results
point out the important thing

II. MODULAR MATRICES IN THE
THREE-DIMENSIONAL TOPOLOGICAL ORDER

A. Modular transformation and modular matrices
in three-dimensional intrinsic topological order

The modular transformation on a 3-torus is the group
SL(3,Z) which is generated by the two operations:

ŝ =

0

@
0 1 0
0 0 1
1 0 0

1

A , t̂ =

0

@
1 0 0
1 1 0
0 0 1

1

A , (1)

where ŝ is a 90� rotation operator that acts the unit vec-
tors by: (x̂, ŷ, ẑ) ! (ẑ, x̂, ŷ). The t̂ is a transformation in
the xy plane that given by (x̂, ŷ, ẑ) ! (x̂+ ŷ, ŷ, ẑ).

For a basis of degenerate ground states {| ai} in a
topological phase, we can consider the action of these
two generators [1–3]:

h a|ŝ| bi = e�↵SV+o(1/V )Sab

h a|t̂| bi = e�↵TV+o(1/V )Tab, (2)

where modular matrices S and T can be regarded as
representations of these two generators in the basis of
degenerate ground states {| ii}, V is the volume of the
three-dimensional (3D) manifold and ↵S and ↵T are some
positive constants independent of the ground states.

In this paper, we will study the SL(3,Z) represen-
tation generated by the ZN discrete symmetry, which

FIG. 1. The e↵ect of modular transformation. (a) Original
plane operators indicated by hx in the yz plane, hy in the
xz plane and hz in the xy plane. (b) After the modular ŝ
transformation. (c) After the modular t̂ transformation.

are three-dimensional versions of quantum double model.
For intrinsic topological order, the number of degenerate
ground states on the 3-torus equals that of the types of
anyonic excitations, and the elements of S and T repre-
sent mutual and self-statistics of anyons [3–6]. One can
use, e.g., the trace of these matrices, tr(S) and tr(T ), to
characterize topological phases and phase transitions.

For example, consider the set of orthonormal degener-
ate ground states | i,j,ki (i, j, k = 0, .., N � 1) of a topo-
logical phase at the fixed point. For a suitable choice of

basis, there exists a set of plane operators W [x]
k

, W [y]
k

,

and W [z]
k

(along to yz�plane, xz�plane and xy�plane,
respectively; k = 0, .., N � 1 and W0 = I) such that

W [x]
i

W [y]
j

W [z]
k

| 0,0,0i = | i,j,ki, where W ’s commute
with one another and the Hamiltonian.

Instead of carrying out the modular transformations
on the degenerate ground states, one can equivalently
consider how the plane operators transform under the
modular transformations. Take the toric code for exam-
ple, depending on how one constructs | 0,0,0i, these W ’s
can be a plane of Pauli X or Z operators. The plane op-
erators act on the physical degrees of freedom, but their

̂s ̂t

Use 3D HOTRG and 3D tnST scheme !! 

Topological invariant: Modular matrices

! SL(3,Z) group: generated by s and t

:cyclic shift 
of z,y,x axes

:shear along y direction 
on surface ┴ x axis

! Modular matrices S and T are representations using degenerate ground states 
" also give exchange/braiding statistics of anyonic excitations

! Ground states: membrane operators
{hx,hy,hz} acting on reference g.s.

t
s

cyclic shift of z,y,x axes

̂s = (
0 1 0
0 0 1
1 0 0)

Topological invariant: Modular matrices

! SL(3,Z) group: generated by s and t

:cyclic shift 
of z,y,x axes

:shear along y direction 
on surface ┴ x axis

! Modular matrices S and T are representations using degenerate ground states 
" also give exchange/braiding statistics of anyonic excitations

! Ground states: membrane operators
{hx,hy,hz} acting on reference g.s.

t
s

shear along y direction  
on surface  x axis⊥

̂t = (
1 0 0
1 1 0
0 0 1)



Numerical method: 3D renormalization group

3D  high order tensor renormalization group ( HOTRG ) 

➜ In the 3D calculation, the computational time scales with  
                                              and the memory scales with .

D11

D6

[ Xie,Chen, Qin, Zhu, Yang
, Xiang,2012]

3d HOTRG  

Tensor-Network scheme for S &T

! 2D tnST scheme

! S & T from wave function overlaps (string/membranes as “symmetry twists”):
" use real space renormalization to obtain fixed-point values (as number of RG steps nRG→∞); 
(note: symmetry twists are also coarse-grained)

! 3D tnST scheme

[Huang & Wei, PRB ’15,’16]

! Ground-state degeneracy & modular matrices/invariants believed to be sufficient to 
characterize topological order

[He,Moradi &Wen, PRB 14’] 

[e.g. Moradi &Wen, PRL‘15]

3D tnST scheme : 



Dcut = 8

Numerical results: 
3D  topological order with deformation on cubic latticeℤ2

Use tr(S) and tr(T) as “order parameters” [He,Moradi &Wen, PRB 14’] in 2D Z2 

Deform the 3D toric-code ground state by local operator  on each spin  
     

Q(g)
|Ψ(g)⟩ = Q(g)⊗N |ΨTC⟩ Q(g) = |0⟩⟨0 | + g2 |1⟩⟨1 | (g=1: undeformed; g=0: product state) 

Effective lattice size:       (fixed point as RG steps ) 
➔ transition at g≈0.68 from topological (e.g. g=1) to trivial phase (e.g. g=0) 

23nRG nRG → ∞

Topological 
Topological order

Characterize topological order: Z2

! Effective lattice size: 23nRG (fixed point as RG steps nRG→∞)

" transition at g≈0.68 from topological (e.g. g=1) to trivial phase (e.g. g=0)

! Use tr(S) and tr(T) as “order parameters” [He,Moradi &Wen, PRB 14’ in 2D Z2] 

! Deform the 3D toric-code ground state by local operator Q(g) on each spin

TopologicalTrivialTopologicalTrivial

trivial: S, T= identity

topological:

(g=1: undeformed; g=0: product state)

Trivial phase
S,T =identityTrivial Trivial



Numerical results: 
Deforming  and   topological orderℤ3 ℤ4

Deform  :  
 

ℤ3
Q(g)ℤ3

= |0⟩⟨0 | + g2 |1⟩⟨1 | + g4 |2⟩⟨2 |

y

y’

x x’

z

z’

gc ≈ 0.66

Dcut = 9

Deform  :  
 

ℤ4
Q(g)ℤ4

= |0⟩⟨0 | + g2 |1⟩⟨1 | + g4 |2⟩⟨2 | + g6 |3⟩⟨3 |

gc ≈ 0.65

Dcut = 8



3D  topological order with deformationℤN

Transitions agree with mapping to 3D Ising/Potts models 

Under such deformation   and     (  and  )Q =
N−1

∑
i=0

qi | i⟩⟨i | qi ≥ 0 q0 = 1 qi = g2

  Potts partition function⟨ΨGS(g) |ΨGS(g)⟩ ⟺ ℤ

Dcut = 8

Dcut = 9

Dcut = 8



Dimensional reduction: 3D 2D →

Compactify z-direction to small radius:  
(i) 3D  2D (ii) SL(3, ) reduces to SL(2, )→ ℤ ℤ

2D braiding is associated with SL(2, ) group, which is generated byℤ

Dimensional reduction: 3D ! 2D

" Compactify z-direction  to small radius:

(i) 3D ! 2D   (ii) SL(3,Z) reduces to SL(2,Z)

" 2D braiding is associated with SL(2,Z) group, which is generated by 

[Moradi & Wen ‘15, 
Wang & Wen ‘15]

# We verify that 3D Zn topological order is decomposed into
copies of 2D Zn topological order via block structure of S & T

Z2 Z3

(showing real parts)

# Reduction:

➜ We verify that 3D  topological order is decomposed into copies of 2D  
topological order via block structure of S & T 

ℤN ℤN

̂t yx = (
1 0 0
1 1 0
0 0 1)̂syx = (

0 1 0
−1 0 0
0 0 1) ➜ Reduction C3D

G =
|G|

⨁
n=1

C2D
G [Moradi & Wen 2015, 

Wang & Wen 2015]

Dimensional reduction: 3D ! 2D

" Compactify z-direction  to small radius:

(i) 3D ! 2D   (ii) SL(3,Z) reduces to SL(2,Z)

" 2D braiding is associated with SL(2,Z) group, which is generated by 

[Moradi & Wen ‘15, 
Wang & Wen ‘15]

# We verify that 3D Zn topological order is decomposed into
copies of 2D Zn topological order via block structure of S & T

Z2 Z3

(showing real parts)

# Reduction:

ℤ2

Dimensional reduction: 3D ! 2D

" Compactify z-direction  to small radius:

(i) 3D ! 2D   (ii) SL(3,Z) reduces to SL(2,Z)

" 2D braiding is associated with SL(2,Z) group, which is generated by 

[Moradi & Wen ‘15, 
Wang & Wen ‘15]

# We verify that 3D Zn topological order is decomposed into
copies of 2D Zn topological order via block structure of S & T

Z2 Z3

(showing real parts)

# Reduction:

ℤ3



Other lattice structure

Diamond lattice

➜ Combing two tensors to form a new tensor. The diamond lattice deforms into a 
cubic lattice. 

3d HOTRG  



Deforming  topological order in diamond latticeℤ2

Deform  :   
 

ℤ2
Q(g)ℤ2

= |0⟩⟨0 | + g2 |1⟩⟨1 |

gc ≈ 0.771



Conclusion: part I  

Main result:  
tensor-network scheme for modular matrices (tnST) to diagnose 3D 
topological order 

 successfully applied to transitions in 3D  toric code under string tension → ℤN

Future:  
1. Twisted “quantum double” models  
2. Fixed point wave function with deformation  
   -> exact MPO/ PEPO 



Twisted topological models 

 Tensor on cubic lattice: large physical degree and bond dimension 

2d twisted TO

 3d: Twisted by 4-cocyle 
• The tensor representation of 

the basis vector


• The membrane operator
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of the space–time 3-manifold by colouring the edges and assigning weights to the tetrahedra of the
triangulation. Let us briefly review how these weights are defined.

Let �ijkl be a tetrahedron with ordered vertices i < j < k < l. Then a branching structure is
given as follows: for any two vertices i < j draw an oriented edge from i to j. Any such branched
tetrahedron can be assigned an orientation sgn(�ijkl) = ±1 by looking at the face �jkl formed by
the vertices j < k < l from the direction of the smallest vertex i: if the majority of edges points in
counterclockwise direction we set sgn(�ijkl) := 1, otherwise sgn(�ijkl) := �1. We can colour the
tetrahedron �ijkl by assigning gji 2 G to each oriented edge from i to j. Naturally we set gij := g�1

ji .
Furthermorewe require this colouring to have flat connections everywhere, i.e. each branched face�ijk
with vertices i, j and k satisfies

gijgjkgki = e. (44)

Finally we assign the following amplitude to any branched, coloured tetrahedron�ijkl:

 (�ijkl) := !(glk, gkj, gji)sgn(�ijkl). (45)

We can define a (G,!)-isometric triangle tensor via the amplitude of its associated tetrahe-
dron �0ijk. In the following we set gi := gi0 and focus on a particular vertex ordering without loss
of generality.

Definition 9 (Dijkgraaf–Witten Form). Let g1, g2, g3 2 G. Then

:= (46)

with the physical index (g21, g32, g31) is called a Dijkgraaf–Witten triangle tensor.

In other words, the above tensor defines the map

A!DW =
X

gi2G

!(g3g�1
2 , g2g�1

1 , g1)�1|g2g�1
1 , g3g�1

2 , g3g�1
1 ihg1, g2, g3| (47)

due to the flat connection condition gij = gig�1
j for each of the three side faces of the tetrahedron. It

is not difficult to prove that every such tensor is indeed (G,!)-isometric.

Lemma 5. Every Dijkgraaf–Witten triangle tensor is (G,!)-isometric.

Proof. The virtual (G,!)-symmetry of A!DW is obvious from the following Pachner 4–1 move:

= = .

Furthermore, we can invert A!DW (on the image of P
!) using its adjoint. This is easily seen once we

glue the tetrahedron representing A!DW and its mirror image representing (A!DW)Ñ along their physical

7

For Z3 SPT, the wave function can be given

A(0, 0, 0) = A(1, 1, 1) = A(2, 2, 2) = 1

A(0, 1, 2) = A(0, 2, 1) = A(1, 1, 2) = A(2, 2, 0) = 1

A(1, 2, 1) = A(2, 0, 2) = A(2, 1, 1) = A(0, 2, 2) = 1

A(1, 2, 2) = A(2, 0, 0) = A(2, 1, 2) = A(0, 2, 2) = 1

A(2, 2, 1) = A(0, 0, 2) = 1

A(2, 0, 1) = A(2, 1, 0) = A(0, 0, 1) = A(1, 0, 0) = !
k

A(0, 1, 0) = A(0, 1, 1) = A(1, 0, 1) = A(1, 1, 0) = !
k

A(1, 2, 0) = A(1, 0, 2) = !
2k
, (17)

where ! = e
2⇡/3 and k = 0, 1, 2.

=

X X

XX
=

X

XX

X

X
XX
X

(a)

(b)

FIG. 6. (a) Combine every two sites and map the system
on the square lattice. (b) Local ZN symmetry action acts on
each site.

The 2D ZN topologically ordered states have N
2-fold

ground-state degeneracy on a torus, which corresponds
to N

2 di↵erent types of quasiparticle excitations. Such
nearly degenerate ground state can be simulated in a SPT
states by applying the symmetry twists hx and hy along
the loops in the y and x directions, respectively.

It is useful to use tensor network representation which
provide a way to add symmetry twist. A TPS with
symmetry twist can be obtained by inserting the inner
symmetry operators along the twist line. The impor-
tant thing is how to get the matrix product operator
(MPO). In order to obtain the local MPO, first, we need
to see how the ZN symmetry act in the local tensor.
The ZN group action can be represented by the opera-
tor X =

PN�1
i=0 |mod(i + 1, N)ihi|. The tensor for ZN

SPT are not invariant under local action of ZN symme-
try. However, the transformed tensors di↵er from the
original ones with local unitary transformation on the
inner indices. The MPO can be represented as X ⌦X↵

ae shown in Fig. 6. Take Z2 SPT phase as an example:

↵ = ↵̄ = |00ih00|+ |01ih01|+ !
k|10ih10|+ |11ih11|.

(18)

Another example is Z3 SPT phase:

↵ =|00ih00|+ |01ih01|+ |02ih02|+
!
2k|10ih10|+ |11ih11|+ |12ih12|+
!
k|20ih20|+ |21ih21|+ |22ih22|. (19)

Therefore, the corresponding modular matrices will be
of size N

2 ⇥ N
2 . However, the matrix elements of S

and T correspond to the overlap of wave functions with
phase ambiguities. For the cyclic group, to act Dech twist
operator on a ZN SPT state N times can take this state
back to the same state. The quantity T

N can be used to
distinguish all di↵erent ZN SPT phases.

In view of this we can consider a deformation on the
tensor elements, specifically,

Ã
(si,sj ,sk)
(↵,↵0,�,�0,�,�0) =

(
1 if si = sj = sk

g ⇥A(si, sj , sk) others
.

(20)

At g = 1, this is a ZN symmetry protected topologi-
cally ordered phase. At g = 0, the tensor represent
a product state of equal weight superposition of all i

(i = 0, 1, 2, ...N � 1) which is a symmetry breaking . At
some critical point in parameters gc , the phase transition
will occur.

FIG. 7. The quantity X2/X1 obtained by taking the ratio
of the contraction value of the double tensor in two di↵erent
ways. X2/X1 is invariant under gauge transformation, such
as unitary operators U and V . It can be used to distinguish
di↵erent fixed-point tensors.

From the TPS with deformation, we can find the phase
transition point of the Z2 SPT model as shown in Fig.
9 by using TRG. The fixed-point tensor structure might
be complicated but it is always possible to identify them.
We calculate the topological invariant quantity T

2.

We find that when 0  g < 0.76,

T
2 =

0

B@

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

CA , (21)

and X2/X1 = 1/2, and this shows that the ground state
is in the symmetry breaking phase. A basis independent
quantity given by the ratio X2/X1, where X1 and X2 as

2d twisted TO

 2d Twisted by 3-cocyle 

Twisted topological models

1. Twisted by 4-cocyle

2. Tensor on cubic lattice: large physical degree and bond dimension

3d twisted TO

Twisted topological models

1. Twisted by 4-cocyle

2. Tensor on cubic lattice: large physical degree and bond dimension

3d twisted TO

Need more efficient 3D tensor RG  !! 
     ATRG, BTRG !! 

[oliver, 2016]

TC : |Ψ⟩ = ∑
c

|ψc⟩ DS : |Ψ⟩ = ∑
c

(−1)# loops |ψc⟩



3D Twisted Z2×Z2 topological order

• From exact TO wave function


• GSD = 43 =64


• H4(Z2×Z2,U(1)) = (Z2)2  ,


• The T matrix of w00, from fixed 
point wave function

9

FIG. 11. The diamond lattice structure. (b) Combining
the two tensors to form a new tensor. The diamond lattice
deforms into a cubic lattice. (b) The pyrochlore lattice struc-
ture. There are two types of tetrahedrons A and B, type A
to surround by type B and vice-versa. (d ) Pyrochlore lattice
is dual to diamond one. It is formed by middles of bonds
of diamond lattice. By decomposing rank-6 tensor into two
rank-4 tensor, and combining the four tensors in a tetrahe-
dron to form a new tensor. The pyrochlore lattice deforms
into a diamond lattice.

where g, gi, gj , gk, gl 2 G. We first consider the !00 case:
we obtain nontrivial T matrices as follows:

T =
4M

i=1

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(40)

IV. THREE-DIMENSIONAL ZN TOPOLOGICAL
ORDER PHASES ON OTHER LATTICE

In this section, we discuss Z2 topological order phase
with string tension g on the diamond and pyrochlore lat-
tice, as it is similar to cubic lattice.

Diamond lattice. The deformation and the Z2 model
are applied to the new spatial geometry of the system.
To construct the ground state, we use the tensor network
representations again. Unlike tensor on the cubic lattice,
the ZN topologically ordered phase is characterized by
the rank-four tensor, P↵,�,�,� with four internal indices
running over 0, 1, 2, ..., N � 1 on vertex and rank-three
tensor Gs

↵,�
with one physical index s running over the N

possible spin states on the link. Again, the double tensor
T can obtained by doing above process. For example, the
double tensor with nonzero components of Z2 model for
Q = |0ih0|+ g2|1ih1| are given by

T[i, j, k, l] =

8
><

>:

1 if ⌦ = 0

g4 if ⌦ = 2

g8 if ⌦ = 4

, (41)

as shown in Fig. 11(a), where ⌦ = i+ j + k + l.
Our tnST scheme is defined on the cubic lattice. How-

ever, by merging nearby local tensors along particular
axis, we can obtain a tensor network on the cubic lattice
as shown in Fig. 11(b). From the TPS with deformation,
we can find the phase transition point of the Z2 model
as shown in Fig. 12 by using tnST scheme. We find that
when 0  g < 0.77, all components of S and T matrices
are 1, and this shows that the ground state is in the triv-
ial phase. As 0.77  g < 1.0 the tensor belongs to the Z2

topologically ordered phase, since we obtain nontrivial S
and T matrices.

The same duality applies to the ZN model on diamond
lattice. The double tensor of the norm of ZN wave func-
tion is just a two copies of the partition function of Potts
model. From the relation (see Equ. 29)) and the tran-
sition point of Potts model on diamond lattice, for ex-
ample, the critical temperature �c = 1/Tc ⇡ 0.7396, we
then obtain gc ⇡ 0.7712. The transition points from the
tnST are quite close to exact mapping result.

Pyrochlore lattice. We then consider ZN topological
order phase with string tension g on the pyrochlore lat-
tice. To construct the ground state, we use the tensor
network representations again. The double tensor with
can be given by rank-six tensor T[i, j, k, l,m, n] (same
as Equ.( 22) ) as shown in Fig. 11(c). To obtain the
modular matrices, we decomposing rank-6 tensor T into
two rank-4 tensor, and combining the four tensors in a
tetrahedron to form a new tensor as shown in Fig. 11(d).
The pyrochlore lattice deforms into a diamond lattice.
We then merge two nearest tensors along particular axis,
and it deforms to cubic lattice.

From the tnST scheme, we can find the find the phase
transition point of Z2 model as shown in Fig. 13. The
fixed-point tensor structure might be complicated but it
is always possible to identify them by calculating S and
T matrices. We find that when 0  g < 0.7974, all
components of S and T matrices are 1, and this shows
that the ground state is in the trivial phase. As 0.794 
g < 1.0 the tensor belongs to the Z2 topologically ordered
phase, since we obtain nontrivial S and T matrices.



Order and disorder in AKLT antiferromagnets

 Affleck-Kennedy-Lieb-Tasaki (AKLT)  state, 
 state of spin 1, 3/2, or high (define on any lattice ) 
➔ unique ground state of two-body isotropic Hamiltonians 

        f(x) is a polynomial functionH = ∑
⟨i, j⟩

f( ⃗S i ⋅ ⃗S j)

AKLT states provides a resource for universal quantum computation
[Wei, Affleck and Raussendorf , 2011]

valence-bond ground state 
simplest valence-bond of two spin-1/2 ➔ singlet state 
|ω⟩ = |01⟩ − |10⟩

[AKLT. 1987,1988]
A B

2

where the bond state are placed on every link l of lattice
and the projectors D(a)P map the virtual space at each
vertex v to physical space. An important point is a =

p
3

which is the ground state of the Hamiltonian (1) with
complete SO(3) symmetry.

In general, we can place any bond state |!i as shown
in Table I on each edge of lattice. It is worth mention-
ing that the 1D AKLT states built up from di↵erent bond
state belong di↵erent symmetry protected topological or-
dered phases with di↵erent 1D representation.

z base x base y base

|�+i |00i+ |11i |0x0xi+ |1x1xi |0y1yi+ |1y0yi
|��i |00i � |11i |0x1xi+ |1x0xi |0y0yi+ |1y1yi
| +i |01i+ |10i |0x0xi � |1x1xi |0y0yi � |1y1yi
| �i |01i � |10i |0x1xi � |1x0xi |0y1yi � |1y0yi

TABLE I. The representations of bond states with di↵erent
basis.

The hexagon lattice is bipartitioned into A and B sites.
The deformed AKLT wave function can be represented
by

| i =
O

v2V

⇣
D(a)P

⌘

v

O

l2L

�k|�+il

=
O

v2VA

⇣
D(a)P

⌘

v

O

v2VB

⇣
(�k)⌦3D(a)P

⌘

v

O

l2L

|�+il

(8)

where �k, k 2 0, x, y, z are Pauli matrixes and �0 = I.
Graphically this construction is shown in Fig. 1(a). The
tensor representation on the hexagon lattice with bond
state | �i is given by

| i =
X

s1,s2,....sN

tT r(As1Bs2 ...AsN�1BsN )|s1s1...sni,

(9)

with

A*
000 = a

A"
100 = A"

010 = A"
001 = 1

A#
101 = A#

110 = A#
011 = 1

A+
111 = a (10)

B*
111 = a

B"
101 = B"

110 = B"
011 = �1

B#
001 = B#

010 = B#
001 = 1

B+
000 = �a (11)

We then upgrade the AKLT family states defined on
various 2D lattices contain mixture of di↵erent entities.
The AKLT model can be thought of as a deformation of

(a)

(b)

(c)
W

FIG. 1. (a)The Valence bond picture of the spin-3/2 AKLT
state on the hexagonal lattice: The circles represent the map
form virtual to physical spin space, the dots represent the vir-
tual spins, and the lines represent the maximally entangled
bond. (b) Contract the physical index of a tensor on a lattice
site a with the physical index of its complex conjugated ten-
sor and remove the non-diagonal term that one double bond
shows an anti-parallel pair to form a single bond tensor. (c)
Horizontal contraction of two lattice sites belonging to the
sublattices A and B respectively.

the Heisenberg model that preserves full rotational sym-
metry. Its ground state-the AKLT state has a simple
TPS representation with bond dimension � = 2, given
by

| i =
X

s1,s2,....sN

tT r(As1As2 ...AsN )|s1s1...sni, (12)

where sk = 1, 2, ...d with d being the physical dimension
of a spin at each site, and Ask ’s are rank-(N + 1) tensor.
The number of link connected to one site is N . In this
paper, we always consider trivalent lattice with N = 3 as
shown in Fig. 2.

FIG. 2. The lattice structure (a) hexagon, (b) square oc-
tagon, (c) cross, (d) star

In a two-dimensional system, it is, however, di�cult
to calculate the tensor trace (tTr) since all indices on the
connected links in the network need to be summed over.
This imposes the hurdles of an exponentially hard cal-
culation. Several approximation schemes have been pro-
posed as solutions in this context such as the iPEPS algo-
rithm, the corner transfer matrix renormalization group
(CTMRG) method [2], and the tensor renormalization
approach [3, 4] which tackle this problem essentially by
scaling the computational e↵ort down to the polynomial
level of calculating the tensor trace.

In this paper, we use the tensor renormalization ap-
proach which is akin to the real space renormalization in
the way that, at each step, the RG is structured by merg-
ing sites (by contracting respective tensors) and truncat-
ing the bond dimension according to the relevance of the

1D and 2D structure



Previous work: Quantum Phase Transitions in Spin-2 AKLT 
Systems 

Proposal by Niggemann, Klu ̈mper, and Zittartz, 2000

Find Hamiltonian , which locally annihilates “deformed-AKLT” state  
 

H(a1, a2)
|Ψ(a1, a2)⟩ = Q(a1, a2)⊗N |ΨAKLT⟩

Q(a1, a2) = |0⟩⟨0 | +
2
3

a1( |1⟩⟨1 | + | − 1⟩⟨−1 | ) +
1
6

a2( |2⟩⟨2 | + | − 2⟩⟨−2 | )

s = 2

NICHOLAS POMATA, CHING-YU HUANG, AND TZU-CHIEH WEI PHYSICAL REVIEW B 98, 014432 (2018)

FIG. 1. The phase diagram of the square-lattice deformed-AKLT
model with deformation parameterized by a2 and a1 as given in (3).
Néel indicates the Néel-ordered phase, with boundary determined
as in Fig. 6; XY indicates the XY-like phase with quasi-long-range
order, with boundary estimated by interpolating from the data in
Fig. 9(b); AKLT indicates the AKLT phase, with the isotropic AKLT
point indicated as |AKLT〉. Likewise the product state at the origin
of parameter space is noted as |0⊗N 〉. The green dotted line demarks
the pseudo-quasi-long-range-ordered region; points on this line have
correlation length ξ ∼ 103 estimated from TNR data by interpolating
the parameter where the classical central charge takes the value
c $ 0.35 after 10 RG steps, as indicated by Fig. 14.

a very small region near the origin; as we increase the bond
dimension of the tensor-network algorithm being used, we find
that that region shrinks, suggesting that this “phase” might not
be anything more than an isolated point in the phase diagram.

In Sec. II, we begin by describing the family of states we
will be working with and their inherent properties, in addition
to how tensor-network algorithms can apply to them. Then in
Sec. III we will describe the phases that we expect to find in the
phase diagram of the system on the square lattice, and detail
our results, as obtained using the tensor-network renormal-
ization (TNR) and higher-order tensor renormalization group
(HOTRG) methods and summarized in the phase diagram in
Fig. 1. Finally, in Sec. IV, we return to the honeycomb lattice
to re-evaluate the evidence for the XY phase there.

II. THE VALENCE-BOND STATE

To define the deformed-AKLT state, we write a general
AKLT state, which will be a tensor-network state with bond
dimension χ = 2 on an arbitrary lattice and introduce a
continuously-parameterized deformation. We start with some
lattice with coordination number q. On each link we place
a state of two spin- 1

2 virtual spins such that each vertex has q
such spins. We then produce the physical degree of freedom by
applying a projector Pq from the q spins |ηi〉 onto the spin-q/2
subspace:

Pq =
∑

η1,η2,...,ηq

cs |s〉〈η1, η2, ..., ηq |, (1)

where s =
∑

i ηi is the physical index, ηi = ± 1
2 represent

the virtual spins in their Sz basis, and cs are Clebsch-Gordan
coefficients. This yields the AKLT state

|ψAKLT〉 =
⊗

v∈V

(Pq )v
⊗

l∈L

|ψ−〉l , (2)

where the singlet states |ψ−〉 = |↑↓〉 − |↓↑〉 are placed on
every link l of the lattice.

We then apply a diagonal, spin-flip-invariant deformation

D(*a) =
q/2∑

s=−q/2

a|s|

cs

|s〉〈s| (3)

in the Sz basis to the physical indices. Then we arrive at a
family of deformed-AKLT states,

|!(*a)deformed〉 ∝ D(*a)⊗N |ψAKLT〉. (4)

For the remainder of this work, we will fix a0 = 1 (or a 1
2

= 1
for half-integer-spin cases). We thus, for example, end up
with two independent parameters in the spin-2 case and only
one independent parameter in the spin-3/2 case. In short, the
deformed-AKLT family of wave functions can be written as

|!(*a)deformed〉 =
⊗

v∈V

(D(*a)Pq )v
⊗

l∈L

|ψ−〉l , (5)

where the operator D(*a)Pq maps the virtual spaces (which
represent the entanglement between the virtual spins) at each
vertex v to the physical space.

We can modify the original two-site AKLT Hamiltonian
[17] to obtain a parent Hamiltonian which locally annihilates
this state:

H (*a) ≡
∑

〈i,j〉
D(*a)−1

i ⊗D(*a)−1
j h

(AKLT)
ij D(*a)−1

i ⊗D(*a)−1
j ,

h
(AKLT)
ij ≡ 1

28

(
Sij + 7

10
S2

ij + 7
45

S3
ij + 1

90
S4

ij

)

Sij ≡ *Si · *Sj . (6)

As h
(AKLT)
ij annihilates the AKLT state, it follows that H (*a)

annihilates the deformed AKLT state. Additionally, Nigge-
man, Klümper, and Zittartz constructed a more general, five-
parameter family of two-site, frustration-free Hamiltonians,
invariant under lattice symmetries as well as on-site spin-flip
and Sz invariance. We note however that the above Hamiltonian
is not well defined when any component ai of *a is zero
(under which circumstance we would need to increase the rank
of the two-site Hamiltonian—impossible with a continuous
deformation). We shall also consider below AKLT-like states
constructed using maximally-entangled two-qubit states other
than |ψ−〉 as the valence bonds.

A. Tensor network representation, bond states, and symmetry

Given a state in the valence-bond picture we have just
presented, it is natural to represent it as a tensor network state
(TNS), namely a projected entangled pair state (PEPS). For
those who are not familiar with tensor network states, we
recommend several of the cited review and pedagogical papers
[18–22]. In this representation we place on each lattice site

014432-2

[ Pomata ,Huang and Wei , 2018]

correlation length (HOTRG)


central charge (TNR)


modular S & T matrices (tnST)



XY ↔ VBS: KT transition via  a1 [ Huang ,Lu,  and Chen  ,in preparation ]

(1) Binder ratio 


(2) correlation ratio  

U2

5

TABLE I. Summary of the estimated critical point

m2
z (BSA) m4

z(BSA) U2(BSA) Cmax(BSA) Chalfmax(BSA) R(BSA) U2(X) R(X)
ac 0.894(8) 0.894(6) 0.894(8) 0.894(7) 0.894(8) 0.894(7) 0.894(8) 0.894(8)

TABLE II. Summary of the exact and estimated critical exponents

2D Ising m2
z m2

z(ac) m4
z m4

z(ac) U2 Cmax Cmax(ac) Chalfmax Chalfmax(ac) R dU2
da

��
ac

dR
da

��
ac

1/⌫ 1 - 1.101(2) - 1.005(7) 1.0104(9) 1.000(5) - 1.00066 - 0.9911 1.0117 0.9726
2�/⌫ 1/4 0.2614 0.2421 - - - - - - - - - -
4�/⌫ 1/2 - - 0.5173 0.5103 - - - - - - - -
⌘ 1/4 - - - - - 0.2563 0.2488 0.2580 0.2514 - - -

where hmax, halfmax are scaling functions. Furthermore, we con-
sider the dimensionless correlation ratio R of Cmax(L) and
Chalfmax(L), which should scale as

R(a, L) ⌘ Cmax(a, L)

Chalfmax(a, L)
= hR(tL

1/⌫), (20)

with some scaling function hR.
In Fig.2(a), (c), (e) we show Cmax(L), Chalfmax(L),

and correlation ratio R as a function of a1, while in
Fig.2(b),(d),(f) we show the rescaled data. By collaps-
ing the data we find ac ⇡ 0.894(7), 0.894(7), 0.894(7)
and ⌫ ⇡ 1.000(5), 1.000(6), 0.991(1) respectively from
Cmax(L), Chalfmax(L), and R. Furthermore, from Cmax(L) and
Chalfmax(L) we find ⌘ ⇡ 0.256(3) and 0.258(0) respectively.
We observe again that the results from different quantities are
highly consistent with each other and results from moments
and Binder ratio.

Now we present our results using second approach. In this
approach, we first use the crossing point of the dimension-
less quantities U2 and R to estimate the critical point. We
then study the finite-size scaling of various quantities at the
critical point to estimate the corresponding exponents. In
Fig.3 (a) and (b) we plot respectively the Binder ratio U2 and
correlation ratio R near the critical point, for various sizes
L = 2i+1

, i = 4, · · · 8. In the inset we plot the crossing
points ac,U2(L) of U2(L) and U2(2L) as a function of 1/L
and similarly for the crossing points ac,R(L) of R. We ob-
serve that ac,U2(L) decreases monotonically as L increase.
By fitting the finite-size crossing points to a power-law func-
tion ac,U2(L) = ac + bL

� we find ac ⇡ 0.894(8). On the
other hand, we find that the crossing points of R does not drift
much and we estimate ac ⇡ 0.894(8) by the crossing point of
the largest size. In passing we note that these results are hight
consistent with the results from the first approach.

After locating the critical point, the values of the critical
exponents can be estimated by studying the finite-size scaling
of various quantities at the (estimated) critical point. At the
critical point the k-th moment shall scales as

hmk
zi(a = ac, L) / L

k�/⌫
, (21)

while the correlation function at maximum and half maximum
distance shall scale as

Cmax, halfmax(a = ac, L) / L
D�2+⌘

. (22)

Finally the critical exponent ⌫ can be estimated by the
derivates of the dimensionless quantities at the critical point

dU2(a, L)

da

����
ac

/ L
1/⌫

, (23)

and similarly for dR/da.
In Fig. 4 we plot the log of above mentioned quantities as

a function of ln(L). We use data from L = 2i+1
, i = 5, · · · 8

to perform the liner fit and the slop of the fitted line is the cor-
responding exponent. In the figure, we also show data from
smaller sizes with L = 22 to 25 and deviation from the liner fit
is clearly observed. From the fitting we find 2�/⌫ ⇡ 0.253(7)
from hm2

zi and 4�/⌫ ⇡ 0.514(2) from hm4
zi. For the expo-

nent ⌘, we find ⌘ ⇡ 0.248(8) and 0.251(2) from Cmax(L) and
Chalfmax(L) respectively. Finally from dU2/da and dR/da we
find ⌫ ⇡ 0.972(6) and 0.972(6).

In Table.III we summarize the values of the estimated crit-
ical point, while in Table.III we summarize the value of crit-
ical exponents. We observe that for all methods used in this
section, the estimated critical point are highly consistent with
each other. Furthermore, the estimated critical exponents are
highly consistent with the expected 2D Ising model. This
demonstrate that the tensor network based finite-size scaling
analysis can be used to determine precisely the critical point
as well as the critical exponents.

4

FIG. 3. (Color online) U2 (a) and R (b) as a function of a1 for L =
2i+1, i = 5, · · · 8. Inset: the (L, 2L) crossing points of U2 and R as
a function of 1/L and their extrapolation to the infinite size.

Consequently Q̃(ac, L) = f(0) and data from different sizes
should cross at the critical point ac. However, if the correction
to the scaling is not negligible the crossing point will drift as L
increases. In this case the standard (L, 2L) crossing analysis
can be used to better estimate the critical point ac.

We begin with the k-th moment of the uniform mag-
netization in the x, y, and z directions: hmk

x,y,zi ⌘
h( 1

L2

P
i S

x,y,z
i )ki. These moments can be calculated via

HOTRG by using the procedure proposed in Ref.[10]. Since
there is no magnetic order in the AKLT phase one has
hmk

x,y,zi = 0. On the other hand in the FM phase one has
hmk

zi 6= 0 and hmk
x,yi = 0. Near the phase transition the k-th

moment hmk
zi shall scale as

hmk
zi(a, L) = L

�k�/⌫
fk((a� ac)L

1/⌫), (15)

where � is the standard critical exponent associated with the
magnetization m / (a � ac)� and fk is the scaling function.
In particular, we calculate the second and 4-th moments. Fur-
thermore, we consider the Binder ratio of the 4th moment and
the square of second moment, U2 ⌘ hm4i/hm2i2. Since it is
dimensionless it shall scale as

U2(a, L) =
hm4i
hm2i2 = f((a� ac)L

1/⌫). (16)

In Fig.1(a), (c), (e) we show hm2
zi, hm4

zi, and Binder ra-
tio U2 as a function of a1, for various of system sizes L =
2i+1

, i = 5, · · · 8. By using the kernel method to collapse the
data from different sizes we estimate the critical exponents. In
Fig.1(b),(d),(f) we show the rescaled data and we observe that
the data collapse very well. For the critical point, we find ac ⇡

FIG. 4. (Color online) Finite-size scaling at critical point.

0.894(8), 0.894(6), 0.894(8) respectively from hm2
zi, hm4

zi,
and U2. We also find ⌫ ⇡ 1.012(4), 1.005(7), 1.014(9),
where ⌫ is the exponent associated with the correlation length
⇠ / (a � ac)�⌫ . Furthermore we find 2�/⌫ ⇡ 0.261(4)
from hm2

zi and 4�/⌫ ⇡ 0.5173 from hm4
zi. We observe that

the results from different quantities are highly consistent with
each other. Furthermore, the values of the exponent are highly
consistent with the expected 2D Ising universality class.

Next we consider the spin-spin correlation function in the
x, y, and z directions,

C
x,y,z(r) ⌘ 1

L2

X

ri

hSx,y,z
ri S

x,y,z
ri+r i. (17)

For finite system near the critical point, there are two length
scales: system size L and correlation length ⇠. On general
ground the following scaling form with two scaling variables
is expected[? ],

C
x,y,z(r) ⇠ |r|�(D�2+⌘)

hx,y,z(r/L, L/⇠), (18)

where ⌘ is the anomalous dimension and hx,y,z is the scal-
ing function. In particular we calculate the correlation at
maximum distance: Cmax(L) ⌘ C

x,y,z(r = (L/2, L/2))
and half of maximum distance: Chalfmax(L) ⌘ C

x,y,z(r =
(L/4, L/4)). In passing we note that the correlation at
maximum/half-maximum distance can be calculated effi-
ciently using HOTRG. In a conventional continuous phase
transition where the correlation length diverges as a power law
⇠ / t

�⌫ , one has

Cmax, halfmax(a, L) = L
�(D�2+⌘)

hmax, halfmax((a� ac)L
1/⌫),

(19)

[ Morita, Kawashima,2018]
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FIG. 1. The phase diagram of the square-lattice deformed-AKLT
model with deformation parameterized by a2 and a1 as given in (3).
Néel indicates the Néel-ordered phase, with boundary determined
as in Fig. 6; XY indicates the XY-like phase with quasi-long-range
order, with boundary estimated by interpolating from the data in
Fig. 9(b); AKLT indicates the AKLT phase, with the isotropic AKLT
point indicated as |AKLT〉. Likewise the product state at the origin
of parameter space is noted as |0⊗N 〉. The green dotted line demarks
the pseudo-quasi-long-range-ordered region; points on this line have
correlation length ξ ∼ 103 estimated from TNR data by interpolating
the parameter where the classical central charge takes the value
c $ 0.35 after 10 RG steps, as indicated by Fig. 14.

a very small region near the origin; as we increase the bond
dimension of the tensor-network algorithm being used, we find
that that region shrinks, suggesting that this “phase” might not
be anything more than an isolated point in the phase diagram.

In Sec. II, we begin by describing the family of states we
will be working with and their inherent properties, in addition
to how tensor-network algorithms can apply to them. Then in
Sec. III we will describe the phases that we expect to find in the
phase diagram of the system on the square lattice, and detail
our results, as obtained using the tensor-network renormal-
ization (TNR) and higher-order tensor renormalization group
(HOTRG) methods and summarized in the phase diagram in
Fig. 1. Finally, in Sec. IV, we return to the honeycomb lattice
to re-evaluate the evidence for the XY phase there.

II. THE VALENCE-BOND STATE

To define the deformed-AKLT state, we write a general
AKLT state, which will be a tensor-network state with bond
dimension χ = 2 on an arbitrary lattice and introduce a
continuously-parameterized deformation. We start with some
lattice with coordination number q. On each link we place
a state of two spin- 1

2 virtual spins such that each vertex has q
such spins. We then produce the physical degree of freedom by
applying a projector Pq from the q spins |ηi〉 onto the spin-q/2
subspace:

Pq =
∑

η1,η2,...,ηq

cs |s〉〈η1, η2, ..., ηq |, (1)

where s =
∑

i ηi is the physical index, ηi = ± 1
2 represent

the virtual spins in their Sz basis, and cs are Clebsch-Gordan
coefficients. This yields the AKLT state

|ψAKLT〉 =
⊗

v∈V

(Pq )v
⊗

l∈L

|ψ−〉l , (2)

where the singlet states |ψ−〉 = |↑↓〉 − |↓↑〉 are placed on
every link l of the lattice.

We then apply a diagonal, spin-flip-invariant deformation

D(*a) =
q/2∑

s=−q/2

a|s|

cs

|s〉〈s| (3)

in the Sz basis to the physical indices. Then we arrive at a
family of deformed-AKLT states,

|!(*a)deformed〉 ∝ D(*a)⊗N |ψAKLT〉. (4)

For the remainder of this work, we will fix a0 = 1 (or a 1
2

= 1
for half-integer-spin cases). We thus, for example, end up
with two independent parameters in the spin-2 case and only
one independent parameter in the spin-3/2 case. In short, the
deformed-AKLT family of wave functions can be written as

|!(*a)deformed〉 =
⊗

v∈V

(D(*a)Pq )v
⊗

l∈L

|ψ−〉l , (5)

where the operator D(*a)Pq maps the virtual spaces (which
represent the entanglement between the virtual spins) at each
vertex v to the physical space.

We can modify the original two-site AKLT Hamiltonian
[17] to obtain a parent Hamiltonian which locally annihilates
this state:

H (*a) ≡
∑

〈i,j〉
D(*a)−1

i ⊗D(*a)−1
j h

(AKLT)
ij D(*a)−1

i ⊗D(*a)−1
j ,

h
(AKLT)
ij ≡ 1

28

(
Sij + 7

10
S2

ij + 7
45

S3
ij + 1

90
S4

ij

)

Sij ≡ *Si · *Sj . (6)

As h
(AKLT)
ij annihilates the AKLT state, it follows that H (*a)

annihilates the deformed AKLT state. Additionally, Nigge-
man, Klümper, and Zittartz constructed a more general, five-
parameter family of two-site, frustration-free Hamiltonians,
invariant under lattice symmetries as well as on-site spin-flip
and Sz invariance. We note however that the above Hamiltonian
is not well defined when any component ai of *a is zero
(under which circumstance we would need to increase the rank
of the two-site Hamiltonian—impossible with a continuous
deformation). We shall also consider below AKLT-like states
constructed using maximally-entangled two-qubit states other
than |ψ−〉 as the valence bonds.

A. Tensor network representation, bond states, and symmetry

Given a state in the valence-bond picture we have just
presented, it is natural to represent it as a tensor network state
(TNS), namely a projected entangled pair state (PEPS). For
those who are not familiar with tensor network states, we
recommend several of the cited review and pedagogical papers
[18–22]. In this representation we place on each lattice site
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FIG. 1. The phase diagram of the square-lattice deformed-AKLT
model with deformation parameterized by a2 and a1 as given in (3).
Néel indicates the Néel-ordered phase, with boundary determined
as in Fig. 6; XY indicates the XY-like phase with quasi-long-range
order, with boundary estimated by interpolating from the data in
Fig. 9(b); AKLT indicates the AKLT phase, with the isotropic AKLT
point indicated as |AKLT〉. Likewise the product state at the origin
of parameter space is noted as |0⊗N 〉. The green dotted line demarks
the pseudo-quasi-long-range-ordered region; points on this line have
correlation length ξ ∼ 103 estimated from TNR data by interpolating
the parameter where the classical central charge takes the value
c $ 0.35 after 10 RG steps, as indicated by Fig. 14.

a very small region near the origin; as we increase the bond
dimension of the tensor-network algorithm being used, we find
that that region shrinks, suggesting that this “phase” might not
be anything more than an isolated point in the phase diagram.

In Sec. II, we begin by describing the family of states we
will be working with and their inherent properties, in addition
to how tensor-network algorithms can apply to them. Then in
Sec. III we will describe the phases that we expect to find in the
phase diagram of the system on the square lattice, and detail
our results, as obtained using the tensor-network renormal-
ization (TNR) and higher-order tensor renormalization group
(HOTRG) methods and summarized in the phase diagram in
Fig. 1. Finally, in Sec. IV, we return to the honeycomb lattice
to re-evaluate the evidence for the XY phase there.

II. THE VALENCE-BOND STATE

To define the deformed-AKLT state, we write a general
AKLT state, which will be a tensor-network state with bond
dimension χ = 2 on an arbitrary lattice and introduce a
continuously-parameterized deformation. We start with some
lattice with coordination number q. On each link we place
a state of two spin- 1

2 virtual spins such that each vertex has q
such spins. We then produce the physical degree of freedom by
applying a projector Pq from the q spins |ηi〉 onto the spin-q/2
subspace:

Pq =
∑

η1,η2,...,ηq

cs |s〉〈η1, η2, ..., ηq |, (1)

where s =
∑

i ηi is the physical index, ηi = ± 1
2 represent

the virtual spins in their Sz basis, and cs are Clebsch-Gordan
coefficients. This yields the AKLT state

|ψAKLT〉 =
⊗

v∈V

(Pq )v
⊗

l∈L

|ψ−〉l , (2)

where the singlet states |ψ−〉 = |↑↓〉 − |↓↑〉 are placed on
every link l of the lattice.

We then apply a diagonal, spin-flip-invariant deformation

D(*a) =
q/2∑

s=−q/2

a|s|

cs

|s〉〈s| (3)

in the Sz basis to the physical indices. Then we arrive at a
family of deformed-AKLT states,

|!(*a)deformed〉 ∝ D(*a)⊗N |ψAKLT〉. (4)

For the remainder of this work, we will fix a0 = 1 (or a 1
2

= 1
for half-integer-spin cases). We thus, for example, end up
with two independent parameters in the spin-2 case and only
one independent parameter in the spin-3/2 case. In short, the
deformed-AKLT family of wave functions can be written as

|!(*a)deformed〉 =
⊗

v∈V

(D(*a)Pq )v
⊗

l∈L

|ψ−〉l , (5)

where the operator D(*a)Pq maps the virtual spaces (which
represent the entanglement between the virtual spins) at each
vertex v to the physical space.

We can modify the original two-site AKLT Hamiltonian
[17] to obtain a parent Hamiltonian which locally annihilates
this state:

H (*a) ≡
∑

〈i,j〉
D(*a)−1

i ⊗D(*a)−1
j h

(AKLT)
ij D(*a)−1

i ⊗D(*a)−1
j ,

h
(AKLT)
ij ≡ 1

28

(
Sij + 7

10
S2

ij + 7
45

S3
ij + 1

90
S4

ij

)

Sij ≡ *Si · *Sj . (6)

As h
(AKLT)
ij annihilates the AKLT state, it follows that H (*a)

annihilates the deformed AKLT state. Additionally, Nigge-
man, Klümper, and Zittartz constructed a more general, five-
parameter family of two-site, frustration-free Hamiltonians,
invariant under lattice symmetries as well as on-site spin-flip
and Sz invariance. We note however that the above Hamiltonian
is not well defined when any component ai of *a is zero
(under which circumstance we would need to increase the rank
of the two-site Hamiltonian—impossible with a continuous
deformation). We shall also consider below AKLT-like states
constructed using maximally-entangled two-qubit states other
than |ψ−〉 as the valence bonds.

A. Tensor network representation, bond states, and symmetry

Given a state in the valence-bond picture we have just
presented, it is natural to represent it as a tensor network state
(TNS), namely a projected entangled pair state (PEPS). For
those who are not familiar with tensor network states, we
recommend several of the cited review and pedagogical papers
[18–22]. In this representation we place on each lattice site

014432-2
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T-matrix

• In toric code:  

• Dehn twist

4

FIG. 2. (a) The double tensor structure. (b) The M is block
diagonalized by the quantum number.

gradually flow to a fixed point tensor that preserves the
gauge symmetry.

The modular matrices can be evaluated and monitored
during the process of the RG steps by performing three
steps. (i) Inserting the gauge transformations g, h, g

0
, h

0

into the internal indices ↵,�,↵0
,�

0
, respectively of the

fixed point double tensor as shown in Fig. 2 (a) to deter-
mine

⌦
 (g0, h0)| (g, h)

↵
.

(ii) Performing the rotation and Dehn twist operators
on the ground state wave function. The operators per-
forming on the physical indices can be achieved or re-
placed by appropriate gauge operations to internal in-
dices,

⌦
 (g0, h0)|T̂ | (g, h)

↵
=

⌦
 (g0, h0)| (g, gh)

↵
⌦
 (g0, h0)|Ŝ| (g, h)

↵
=

⌦
 (g0, h0)| (h, g�1)

↵

(iii) Finally, tracing all internal indices of the fixed

point tensor.

For the Z2 topological phase in Ref. [61], the Z2 gauge
symmetry is generated by �z acting on each internal in-
dices. (We note that for di↵erent forms of ground-state
wavefunctions, the gauge operator might be �x.) The
same rule holds in the the ZN topological phase that
generalize from this case. The gauge symmetry can be
generated by the N⇥N operator Z at which all elements
are zero except diagonal term Zk,k = exp 2⇡i(k�1)

N
; k =

1, 2, 3, ...N .

The T̂ and Ŝ transformation can be written in the basis
of the degeneracy ground state generated by string oper-
stors, | (C1, C2)

↵
on the torus. The string operators that

can be chosen as Zq = (Z)q ⌦ (Z†)q ⌦ (Z)q ⌦ (Z†)q . . . ,
q = 0, 1, 2, ..., N � 1 and Z0 = I. The | (I, I)

↵
is our

reference ground state represented by the tensor prod-
uct state in Eq. 8 as vacuum state. Other degeneracy
ground states can be obtained by string operators along
loop C1 and C2 along the vertical and horizontal direc-
tion, respectively.

To apply Dehn twist to all degeneracy
ground states we can get the N

2 by N
2

T -
matrix: Ta,b =

⌦
 (Za1

,Za2)|T̂ | (Zb1
,Zb2)

↵
=⌦

 (Za1
,Za2| (Zb1

,Zb1+b2)
↵
; a1, a2, b1, b2 =

0, 1, 2, ...N � 1, and a = (a1 ⇥ N + a2) + 1; b =
(b1 ⇥ N + b2) + 1. For example, we apply Dehn twist
to all degeneracy ground state and obtain the 4 by 4
T -matrix for the the Z2 states as follows:

T =

0

BB@

⌦
 (I, I)| (I, I)

↵ ⌦
 (I, I)| (I,Z)

↵ ⌦
 (I, I)| (Z,Z)

↵ ⌦
 (I, I)| (Z, I)

↵
⌦
 (I,Z)| (I, I)

↵ ⌦
 (I,Z)| (I,Z)

↵ ⌦
 (I,Z)| (Z,Z)

↵ ⌦
 (I,Z)| (Z, I)

↵
⌦
 (Z, I)| (I, I)

↵ ⌦
 (Z, I)| (I,Z)

↵ ⌦
 (Z, I)| (Z,Z)

↵ ⌦
 (Z, I)| (Z, I)

↵
⌦
 (Z,Z)| (I, I)

↵ ⌦
 (Z,Z)| (I,Z)

↵ ⌦
 (Z,Z)| (Z,Z)

↵ ⌦
 (Z,Z)| (Z, I)

↵

1

CCA . (7)

We also can obtain the the N
2 by N

2
T -

matrix generated by 90�-rotation and given
by Sa,b =

⌦
 (Za1

,Za2)
↵
|Ŝ| (Zb1

,Zb2)
↵

=⌦
 (Za1

,Za2
↵
| (Zb2

,ZN�b1)
↵
.

III. THE RESULTS

A. The quantum ZN phase

Let us begin by describing the construction of ZN

wavefunctions. Their Hamiltonian is generalized from
toric code model [61, 75]. The tensor product state (TPS)
on the square lattice motivated by the ZN topological or-
dered phase is characterize by the rank-4 tensor, P↵,�,�,�

with four internal indices running over 0, 1, 2, ...N � 1 on
vertex and the rank-3 tensorGs

↵,�
with one physical index

s running over the N possible spin states 0, 1, ....(N � 1)
on the link as shown in Fig. 6 (a) . The wave function
can be given by

 =
X

{si}

tTr(⌦vP ⌦l G
si) | s1, s2, ....i, (8)

where v labels vertices and l links.
The ZN ground state that we discussed above is given

by the following choice of tensors with internal indices
running over 0, 1, 2, , ..., N � 1

P↵,�,�,� =

⇢
1, if ↵+ � + � + � = 0 mod N,

0, otherwise,
(9)

G
i

ii
= 1, i = 0, 1, 2, 3, ..., N � 1,

others=0. (10)

Modular transformation and matrices

SL(2,Z)
! SL(2,Z) generated by s & t

[90◦ rotation on square] [Dehn twist]

! Modular transformation on degenerate ground states
" modular matrices S (mutual statistics) & T (self-statistics)

" When rotation 120◦ is symmetry:S =

0

BB@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

CCA ;T =

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA

| ↵,�i = (Z1)↵(Z2)� | 0,0i

| ↵,�i ! | ↵,↵+�i

T = h ↵0,�0 |T̂ | ↵,�i

T =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

1

CCA

Use topological charge basis:

=> self statistics

I    e   m   em
ie θ



2D  (symmetry) topological order phaseℤN

The norm is equal to the 
partition function of 2D 
classical Ising model on 
triangular lattice  
gc = 3−0.25 = − 0.759835

T 2 =
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BB@
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1

CCAT 2 =

0

BB@

1 0 0 0
0 1 0 0
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1

CCA T 2 =

0

BB@
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0 0 0 0

1
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FIG. 14. The Z2 SPT model represented by tensor [Eq. (35)]:
the trace of T 2 (solid blue circle) and the magnetization h�zi
(black empty square) as functions of parameter g display the
phase transitions at critical point gc1 = �0.760 from non-
trivial Z2 SPT labeled as SPT1 to symmetry breaking phases
labeled as SB and at critical point gc2 = 0.760 from symmetry
breaking phase to the trivial Z2 SPT labeled as SPT0 with
Dcut = 16 and the step of HOTRG is 10.

We remark that the wavefunction (34) is the ground
state of the following Hamiltonian of Eq. (A4) with en-
ergy identically zero,

H(g) ⌘

(P
p

Rp(g) h{p}
1 Rp(g) if g < 0,

P
p

Rp(g) h{p}
0 Rp(g) if g � 0,

(36)

where the detail of its construction is explained in Ap-
pendix A. We expect that any transition arising from this
will be continuous.

We would like to emphasize that even though the MPO
is the same as that for the fixed-point one in the same
branch of the wavefunction, in our numerical calcula-
tions we check which MPO makes the state invariant and
then use that MPO for evaluating the modular matrices.
Moreover, for simplicity of calculation, we merge every
two sites on the hexagonal lattice and map the system
to the square lattice as shown in Fig. 13(a) [121]. Then
each local tensor has four double inner indices and four
physical indices.

The resulting phase diagram is shown in Fig. 14 and
it turns out that there are two phase transitions, with a
finite region of symmetry-breaking phase separating the
two SPT phases. When �0.760  g < 0.760, we obtain
trivial modular matrices

S = T =

0

B@

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

CA , (37)

and this shows that this region is the symmetry-breaking
phase, same as the cat state. When g > 0.760, we obtain

FIG. 15. The trace of T 2 as a function (g � gc)⇥ L
⌫ on the

Z2 SPT model represented by tensor [Eq. (35)] near transition
points gc2 ⇡ 0.760.

the following modular matrices

S =

0

B@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

CA , T =

0

B@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CA . (38)

The main characterization of the SPT phase (ZN in gen-
eral) is the T 2 matrix,

T 2 =

0

B@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CA , (39)

whose trace is 4. Thus this region belongs to the trivial
Z2 (SPT0). For g < �0.760, we obtain the following
modular matrices,

S =

0

B@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 �1

1

CA , T =

0

B@

1 0 0 0
0 1 0 0
0 0 0 �1
0 0 1 0

1

CA , (40)

the T 2 matrix is

T 2 =

0

B@

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

1

CA , (41)

whose trace is 0. Thus this regions belongs to the non-
trivial Z2 (SPT1) symmetry-protected topologically or-
dered phase. We note that the modular matrices for both
SPT phases agree with our analytic results in Sec. II B
for the fixed-point SPT wavefunctions.

As seen from Fig. 14, the topological order parameters
clearly show a sharp change around |gc| = 0.760, and the
transition point separates the symmetry-breaking phase
from the symmetry protected topological phase. Also
shown in the figure is the spontaneous magnetization h�zi

The   SPT phase with deformationℤN Topological invariant 

[Hung & Wen, 2014]

T2 =

1 0 0 0
0 1 0 0
0 0 (−1)k 0
0 0 0 (−1)k0 g

symmetry breaking

-1

 SPT1ℤ2

gc2
= 0.760gc1

= − 0.760 1

 SPT0ℤ2

7

For Z3 SPT, the wave function can be given

A(0, 0, 0) = A(1, 1, 1) = A(2, 2, 2) = 1

A(0, 1, 2) = A(0, 2, 1) = A(1, 1, 2) = A(2, 2, 0) = 1

A(1, 2, 1) = A(2, 0, 2) = A(2, 1, 1) = A(0, 2, 2) = 1

A(1, 2, 2) = A(2, 0, 0) = A(2, 1, 2) = A(0, 2, 2) = 1

A(2, 2, 1) = A(0, 0, 2) = 1

A(2, 0, 1) = A(2, 1, 0) = A(0, 0, 1) = A(1, 0, 0) = !
k

A(0, 1, 0) = A(0, 1, 1) = A(1, 0, 1) = A(1, 1, 0) = !
k

A(1, 2, 0) = A(1, 0, 2) = !
2k
, (17)

where ! = e
2⇡/3 and k = 0, 1, 2.

=

X X

XX
=

X

XX

X

X
XX
X

(a)

(b)

FIG. 6. (a) Combine every two sites and map the system
on the square lattice. (b) Local ZN symmetry action acts on
each site.

The 2D ZN topologically ordered states have N
2-fold

ground-state degeneracy on a torus, which corresponds
to N

2 di↵erent types of quasiparticle excitations. Such
nearly degenerate ground state can be simulated in a SPT
states by applying the symmetry twists hx and hy along
the loops in the y and x directions, respectively.

It is useful to use tensor network representation which
provide a way to add symmetry twist. A TPS with
symmetry twist can be obtained by inserting the inner
symmetry operators along the twist line. The impor-
tant thing is how to get the matrix product operator
(MPO). In order to obtain the local MPO, first, we need
to see how the ZN symmetry act in the local tensor.
The ZN group action can be represented by the opera-
tor X =

PN�1
i=0 |mod(i + 1, N)ihi|. The tensor for ZN

SPT are not invariant under local action of ZN symme-
try. However, the transformed tensors di↵er from the
original ones with local unitary transformation on the
inner indices. The MPO can be represented as X ⌦X↵

ae shown in Fig. 6. Take Z2 SPT phase as an example:

↵ = ↵̄ = |00ih00|+ |01ih01|+ !
k|10ih10|+ |11ih11|.

(18)

Another example is Z3 SPT phase:

↵ =|00ih00|+ |01ih01|+ |02ih02|+
!
2k|10ih10|+ |11ih11|+ |12ih12|+
!
k|20ih20|+ |21ih21|+ |22ih22|. (19)

Therefore, the corresponding modular matrices will be
of size N

2 ⇥ N
2 . However, the matrix elements of S

and T correspond to the overlap of wave functions with
phase ambiguities. For the cyclic group, to act Dech twist
operator on a ZN SPT state N times can take this state
back to the same state. The quantity T

N can be used to
distinguish all di↵erent ZN SPT phases.

In view of this we can consider a deformation on the
tensor elements, specifically,

Ã
(si,sj ,sk)
(↵,↵0,�,�0,�,�0) =

(
1 if si = sj = sk

g ⇥A(si, sj , sk) others
.

(20)

At g = 1, this is a ZN symmetry protected topologi-
cally ordered phase. At g = 0, the tensor represent
a product state of equal weight superposition of all i

(i = 0, 1, 2, ...N � 1) which is a symmetry breaking . At
some critical point in parameters gc , the phase transition
will occur.

FIG. 7. The quantity X2/X1 obtained by taking the ratio
of the contraction value of the double tensor in two di↵erent
ways. X2/X1 is invariant under gauge transformation, such
as unitary operators U and V . It can be used to distinguish
di↵erent fixed-point tensors.

From the TPS with deformation, we can find the phase
transition point of the Z2 SPT model as shown in Fig.
9 by using TRG. The fixed-point tensor structure might
be complicated but it is always possible to identify them.
We calculate the topological invariant quantity T

2.

We find that when 0  g < 0.76,

T
2 =

0

B@

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

CA , (21)

and X2/X1 = 1/2, and this shows that the ground state
is in the symmetry breaking phase. A basis independent
quantity given by the ratio X2/X1, where X1 and X2 as

2d SPT



Tensor network scheme for modular S and T 
matrices (tnST) 
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FIG. 5. (a)The tensor representation of overlap of the twist
ground states. (b)The double tensor structure. (c) The dou-
ble line structure of matrix product operators.

on the symmetry twists (hx, hy) as shown in Fig. 1 can
be used.

In practice, to obtain the (simulated) degenerate
ground states, we inset the matrix product operators
OV (hx) and OH(hy) along the y and x directions, re-
spectively, to the state | i, and the action of ŝ and t̂
will transform these MPO’s; see also Figs. 3 and 4. Thus
in carrying out the wavefunction overlaps, we also need
to update the matrix product operators as we update
the local tensor in the procedure of HOTRG. After the
coarse-graining procedure of the local tensor, the coarse-
grained MPO’s can be applied before the tensor con-
traction to determine the modular matrices. In brief,
with an appropriate choice of MPO’s, the same proce-
dure works for both topologically ordered phases and
symmetry-protected topological phases.

The modular matrices can be evaluated and monitored
during the process of the tnST procedure (implemented
using HOTRG), which can broken down to the following
steps for convenience.

(1) Creating the basis set . Given a ground state | i,
thread the symmetry twists for SPT phases (or gauge
transformations for topologically ordered phases) hx and
hy along y and x directions, respectively, by applying
the the matrix product operators OV (hx) = mV ⌦ mV ⌦

...mV and OH(hy) = mH ⌦ mH ⌦ ...mH , respectively,
and denote the resultant wavefunction as | (hx, hy)i; see
Fig. 5(a). This is the set of basis states that the modular
transformations ŝ and t̂ will act on.

(2) Simulating the rotation and the Dehn twist . As
remarked earlier, the symmetry or string operators that
are performed on the physical indices can be achieved
by appropriate symmetry operations to internal indices.
The rotation and Dehn twist can then be used to trans-
form the symmetry twists (or string operators) them-

selves, schematically denoted as
⌦
 (h0

x
, h0

y
)|t̂| (hx, hy)

↵
=

⌦
 (h0

x
, h0

y
)| (hx, hxhy)

↵
⌦
 (h0

x
, h0

y
)|ŝ| (hx, hy)

↵
=

⌦
 (h0

x
, h0

y
)| (hy, h�1

x
)
↵
.

The tensor representation of
⌦
 (h0

x
, h0

y
)| (hx, hxhy)

↵
is

shown in Fig. 5(a).

(d)

(e) (f)

(b) (c)(a)

(g)

FIG. 6. A HOTRG contraction of the tensor-network state
along (a) y (d) x axis on the square lattice. Step of contraction
and renormalization of two local tensor along (b) y-direction
and (e) x-direction and renormalization of inner symmetry
operators MH and MV in (c) (f). (g) At each step along x

and y direction, four sites are contracted into a single site.

(3) Creating the double tensor and double MPO’s.
Contract physical indices to from the double tensor T

as shown in Fig. 5(b) and form the generalized doubled
inner operators MV = m0⇤

V
⌦ mV and MH = m0⇤

H
⌦ mH

(see Fig. 5(c)(d)), which act on each bond along verti-
cal and horizontal twist lines, respectively, as shown in
Fig. 6(a).

When evaluating the modular T matrix:⌦
 (h0

x
, h0

y
)| (hx, hxhy)

↵
, the symmetry twists resulting

from both the ket and the bra can be lumped into a gen-
eralized double-layer matrix product operator defined by
OH(h0

x
, hx) = OV (h0

x
)⇤

⌦ OH(hx) = MH ⌦ MH ... ⌦ MH

and OV (h0
y
, hxhy) = OV (h0

y
)⇤

⌦ OV (hx)OV (hy) =
MV ⌦ MV ... ⌦ MV . The generalized double-layer MPO
for the modular S matrix can be expressed similarly. It is
these generalized MPO’s that need to be coarse-grained
as well.

(4) Coarse-graining . To coarse grain the local tensors
and generalized MPO’s, we contract the lattice along the

[ Huang and Wei  2016]
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FIG. 5. (a)The tensor representation of overlap of the twist
ground states. (b)The double tensor structure. (c) The dou-
ble line structure of matrix product operators.

on the symmetry twists (hx, hy) as shown in Fig. 1 can
be used.

In practice, to obtain the (simulated) degenerate
ground states, we inset the matrix product operators
OV (hx) and OH(hy) along the y and x directions, re-
spectively, to the state | i, and the action of ŝ and t̂
will transform these MPO’s; see also Figs. 3 and 4. Thus
in carrying out the wavefunction overlaps, we also need
to update the matrix product operators as we update
the local tensor in the procedure of HOTRG. After the
coarse-graining procedure of the local tensor, the coarse-
grained MPO’s can be applied before the tensor con-
traction to determine the modular matrices. In brief,
with an appropriate choice of MPO’s, the same proce-
dure works for both topologically ordered phases and
symmetry-protected topological phases.

The modular matrices can be evaluated and monitored
during the process of the tnST procedure (implemented
using HOTRG), which can broken down to the following
steps for convenience.

(1) Creating the basis set . Given a ground state | i,
thread the symmetry twists for SPT phases (or gauge
transformations for topologically ordered phases) hx and
hy along y and x directions, respectively, by applying
the the matrix product operators OV (hx) = mV ⌦ mV ⌦

...mV and OH(hy) = mH ⌦ mH ⌦ ...mH , respectively,
and denote the resultant wavefunction as | (hx, hy)i; see
Fig. 5(a). This is the set of basis states that the modular
transformations ŝ and t̂ will act on.

(2) Simulating the rotation and the Dehn twist . As
remarked earlier, the symmetry or string operators that
are performed on the physical indices can be achieved
by appropriate symmetry operations to internal indices.
The rotation and Dehn twist can then be used to trans-
form the symmetry twists (or string operators) them-

selves, schematically denoted as
⌦
 (h0

x
, h0

y
)|t̂| (hx, hy)

↵
=
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The tensor representation of
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is

shown in Fig. 5(a).

FIG. 6. A HOTRG contraction of the tensor-network state
along (a) y (d) x axis on the square lattice. Step of contraction
and renormalization of two local tensor along (b) y-direction
and (e) x-direction and renormalization of inner symmetry
operators MH and MV in (c) (f). (g) At each step along x

and y direction, four sites are contracted into a single site.

(3) Creating the double tensor and double MPO’s.
Contract physical indices to from the double tensor T

as shown in Fig. 5(b) and form the generalized doubled
inner operators MV = m0⇤

V
⌦ mV and MH = m0⇤

H
⌦ mH

(see Fig. 5(c)(d)), which act on each bond along verti-
cal and horizontal twist lines, respectively, as shown in
Fig. 6(a).

When evaluating the modular T matrix:⌦
 (h0

x
, h0

y
)| (hx, hxhy)

↵
, the symmetry twists resulting

from both the ket and the bra can be lumped into a gen-
eralized double-layer matrix product operator defined by
OH(h0

x
, hx) = OV (h0

x
)⇤

⌦ OH(hx) = MH ⌦ MH ... ⌦ MH

and OV (h0
y
, hxhy) = OV (h0

y
)⇤

⌦ OV (hx)OV (hy) =
MV ⌦ MV ... ⌦ MV . The generalized double-layer MPO
for the modular S matrix can be expressed similarly. It is
these generalized MPO’s that need to be coarse-grained
as well.

(4) Coarse-graining . To coarse grain the local tensors
and generalized MPO’s, we contract the lattice along the

Simulating the rotation and the Dehn twist

Creating the double tensor and double 
MPO’s to determine  the wave function 
overlap


