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Motivation

The classification of 3d bosonic topological order (TO)& symmetry protected
topological order(SPT) is well known (fixed point wave function )

We would like to study quantum system (with topological order) in 3D

But How to detect those topological order phase numerically?

Numerical tool 3D CTM,...
- To simplify our problem, we will consider fixed poin@ fun@vith

deformation (not from Hamiltonian)
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Introduction: Topological order

* Beyond Landau (symmetry-breaking) paradigm ‘[g;ULi,STOI’;l_eR%gSSWd
Laughlin ‘83,
eg. Fractional Quantum Hall, Spin Liquid, ... Anderson ‘73,...]

* Topological order characterized by:

Topology-dependent ground-state degeneracy (V%)

Nontrivial excitations and statistics (usually in 2d)

Long-range entanglement ~ [Ven 90l

% Potential application in fault-tolerant quantum computation

_ _ [Wen and Niu ‘90 ]
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Topological order: Z,; Toric code

* 2D and 3D: spins reside on edges

N -state degrees of freedom located on the link | q)i
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* The Hamiltonian of the Z, toric code o ; .
J ] [ [
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* The operators Z; and X; as o——o—'—o
Zlgyi=oq)y; Xlgy=lg—1); o=2e""

* Ground state satisfy
A|G.S.) =Bp|G.S.) =|G.S.)




Topological order: Z,; Toric code

* Degeneracy on 2,3-torus
2D: #g4,,=N>  3D: #,,, =N’

%* Representative ground states can be written as a tensor network

) = ZtTr(@P@GSi)\sl,sz, ),
S; v [

@ each site:f) @ each link ( 3 direction )
G;,ﬁ — 5S,a5s,ﬂ

Z —
, Pxx/yy/ZZ/ — 1
y
; only if \)
X /°/ X y a © p !
y x—=x"+y—=y'+z—72'=0(mod n)
ZI
* Ground state: G;,ﬁ = f5 05,00,

— use the string operater to get other ground state
e.g. 2d TC |¥a.8) = (21)%(22)" 10,0}



Order parameter: from wave function overlap

* Topological order characterized by its quasiparticle excitations- anyons
(with nontrivial braiding statistics) P

* Mathematically, the braiding statistics is encoded in the modular
matrices.

* The modular matrices, or S and T matrices, are generated respectively
by the 90° rotation and Dehn twist on torus.

(1ha|S|hy) = e~ sV He/VIg ,
(Wa|T|hp) = e TV /I,

{|va)}i1 :degenerate ground state

[Hung & Wen ’14; Moradi & Wen ‘14]



Previous work: 2D topological order with deformation

e—asVHo(1/V)g

* Start from a wave function in 2D with deformation (thal S|t) =
(a| T|thp) = e7rV oI,

= By tuning a parameter to study the phase transition

We propose a way -tnST “Tensor network
scheme for modular S and T matrices” to
detect quantum phase transition numerically.

[ Huang and Wei 2016]

* How to describe a quantum state?
Tensor product states [F Verstraete, Murg, & Cirac 2008]

* What is the “order parameter”?
Modular matrices [Zhang,Grover, Turner, Oshikawa, & Vishwanath 2012]

% How to calculate the observable?
Higher order tensor renormalization group [Xie, Chen, Qin, Zhu, Yang, & Xiang, 2012 ]



2D Z ,, Topological order phase

* S & T from wave function overlaps (string/membranes as “symmetry twists”):

—> use real space renormalization to obtain fixed-point values

(as number of RG steps 1y, — ©0);

(note: symmetry twists are also coarse-grained)

* (Ground-state degeneracy & modular matrices/invariants believed to be

sufficient to characterize topological order

* 7, topological order phase:

Wave function |¥) = Z ly,.)

Deformed wave function

W(g)) =Q(9) ®Q(9) ®Q(9) ®...|¥)
Q = |0)(0[ + g[1)(1]

[ Huang and Wei 2016]
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Topological invariant (Modular Matrices) in three
dimension

* SL (3,Z) group : generated by a § and t

010 1 00
§=(() 0 1) 7 r=11 1 0 /ﬂ/
1 00 A 0 0 1

cyclic shift of z,y,x axes shear along y direction
on surface | x axis

* Modular matrices S and T are representations using degenerate ground
states = also give exchange/braiding statistics of anyonic excitations

Si,j = <\Pl|§|l:[’_]> Tz] — <‘Pz| f|le>

% Ground states: membrane

operators{ﬁx, lAzy, ﬁz} acting on

reference G.S.
W) = hh| W)

Use 3D HOTRG and 3D tnST scheme 1!



Numerical method: 3D renormalization group

* 3D high order tensor renormalization group (HOTRG ) [ xie chen, Qin, zhu, Yang
, Xiang,2012]

=» In the 3D calculation, the computational time scales with D!
and the memory scales with D°.

(a) (c) * 3D tnST scheme:

3d HOTRG




Numerical results:
3D Z, topological order with deformation on cubic lattice

* Use tr(S) and tr(T) as “order parameters” [He,Moradi &Wen, PRB 14']in 2D Z:

* Deform the 3D toric-code ground state by local operator O(g) on each spin
| ¥(2)) = O(g)®"| Y0 0O =10)0]|+ g2| 1){(1| (g=1:undeformed; g=0: product state)
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* Effective lattice size: 276 (fixed point as RG steps Npg —> 00)

-> transition at g=0.68 from topological (e.g. g=1) to trivial phase (e.g. g=0)



Numerical results:
Deforming Z5 and Z, topological order //;::;‘::

* Deform Zj: * Deform Z,:
()7, = 10)0] + g 1){1| + g*|2)(2] 0(8)z, = 10)(0] + g2 1)(1] +g*12)(2| + g°13)(3|
g. ~ 0.66 g. ~ 0.65
| (@) 70 , : ,
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3D Z topological order with deformation

* Transitions agree with mapping to 3D Ising/Potts models

N—1
* Under such deformation 0 = Y’ ¢;|i)(i| and ¢,>0 (gy=1andg,=g?)
=0

* (W2 |Pes(g)) < Z Potts partition function

57 12 1/4
e —

g = 5 :
(\/6'8‘7—}—17\7—1 )

Numerics |MC results|From mapping
Je BJ ge(BT)
0.68 D, =8| 0.443308 | 0.683378
0.66 D.,,=9| 0.5496 0.665594
0.65 b, =8| 0.6283 0.650802




Dimensional reduction: 3D —2D

* Compactify z-direction to small radius:

(i) 3D — 2D (i) SL(3,Z) reduces to SL(2,Z) i — LS

* 2D braiding is associated with SL(2,Z) group, which is generated by

0O 1 0 1 00 G|
=1 -1 0 0 =111 0 =» Reduction Cg;D = @ CCZ;D [Moradi & Wen 2015,
O 0 1 00 1 Wang & Wen 2015]

n=1

-» We verify that 3D Z, topological order is decomposed into copies of 2D Z,,
topological order via block structure of S & T

(showing real parts)
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Other lattice structure

% Diamond lattice

=»> Combing two tensors to form a new tensor. The diamond lattice deforms into a
cubic lattice.

(a) (c)

o

o o
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/k e 4 e QG o °0 9
o o =l

o o o
b Q9 O o
(b) Oc o ’O o oc °

Q Ou OQ 1 1

3d HOTRG



Deforming Z, topological order in diamond lattice

* Deform Z,:
0(g)z, = 10)(0| + g 1)(1]

(a) (b)

g~ 0.771

0.70 0.72 0.74 0.76 0.78 0.80



Conclusion: part |

* Main result:
tensor-network scheme for modular matrices (tnST) to diagnose 3D
topological order

— successfully applied to transitions in 3D Z,, toric code under string tension

* Future:
1. Twisted “quantum double” models

2. Fixed point wave function with deformation
-> exact MPO/ PEPO



Twisted topological models

* 2d Twisted by 3-cocyle Ie: %) = Z vy DS:¥) =) (=D )

[oliver, 2016
* 3d: Twisted by 4-cocyle ol L)

- The tensor representation of JK:/ %
. = 45 g O

the b t
© basis veclor Need more efficient 3D tensor RG !
- The membrane operator ATRG, BTRG !

* Tensor on cubic lattice: large physical degree and bond dimension

(a) 8 7 (b)
Wl L
\ al
94 | U8
4 _ 0 I ’
3 91/ g2

3d twisted TO 3d twisted TO



3D Twisted Zo>xZ> topological order

- From exact TO wave function
- GSD =43 =64 ( 1
« H4(Z2xZ2,U(1)) = (Z2)2

- The T matrix of woo, from fixed
point wave function 1




Order and disorder in AKLT antiferromagnets

* valence-bond ground state
simplest valence-bond of two spin-1/2 = singlet state

|@) =101) = [10) e

% 1D and 2D structure [AKLT. 1987,1988]

* Affleck-Kennedy-Lieb-Tasaki (AKLT) state,
state of spin 1, 3/2, or high (define on any lattice )
-=> unique ground state of two-body isotropic Hamiltonians
H = Zf(?i- f}) f(x) is a polynomial function
(i.J)
* AKLT states provides a resource for universal quantum computation

[Wei, Affleck and Raussendorf, 2011]



Previous work: Quantum Phase Transitions in Spin-2 AKLT
Systems

* Proposal by Niggemann, Klu'mper, and Zittartz, 2000

*  Find Hamiltonian H(a,, a,), which locally annihilates “deformed-AKLT” state
=2
['P(a), ap)) = Oay, a)®" | Pags7) ’

Q(ay,ay) = |0)(0] +\/%a1(| DAT+]=1)(=11]) +\/%az(|2><2| + [ =2)(=2])

[ Pomata ,Huang and Wei , 2018]
* correlation length (HOTRG)

* central charge (TNR)

* modular S & T matrices (tnST)

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0



XY <~ VBS KT tranS|t|On V|a al [ Huang ,Lu, and Chen ,in preparation ]

(1) Binder ratio U,  Us(a,L) =
[ Morita, Kawashima,2018]

. . _ Cmax(a7 L) _ 1/v
(2) correlation ratio R(a. L) = Cramoe(a L)~ L),




Order and disorder in AKLT antiferromagnets in
three dimensions

% AKLT state on cubic lattice %* AKLT state on diamond lattice
(6 neighbors) : Neel state (4 neighbors) :disorder state
s =3 [Para meswaran,Sondhi, Arovas, 2009]
4 N

<What is the phase diagram of the deformed AKLT in three

dimensions? =2

W

% AKLT state on pyrochlore
(6 neighbors) : disorder state




The spin-3 on the cubic lattice

* The deformed AKLT state |¥(g)) = O(@)®V | ¥ 151 7)

0(2) = 10)(01 + (1111 +1 = 1)¢=11 ) + (|2><2|+|—2><—2|)+\/;iog(|2><2|+|—2><—2|)

AKLT point
T g =1/20 = 4.472
| 30000 O O Mx
2.5F ooy, o 0 Myl
N AA M
2.0} A




The spin-2 on the diamond lattice

* The deformed AKLT state |¥(g)) = O(@)® | ¥ 151 7)

1
0(9) = 10)(0] + (|1><1|+|—1><—1|)+\f3g(|2><2|+|—2><—2|)

AKLT point
g=1v6=2449 Next step:
#9 >0 x | 'AKI;L'T | 59909“ - S& T matrices
1.5¢ — state Q ] - finite size scaling (If we can
, o,.«o large Dcut )....
1.0 | .
&
|
order phase

.........................................

0%0 0.5 1.0 15 20 25 3.0 35 4.0
9



Conclusion:

* Main result:
1. tensor-network scheme for modular matrices (tnST) to diagnose 3D
topological order

— successfully applied to transitions in 3D Zn toric code under string tension

2. study the one-parameter deformation of the AKLT state on the cubic
lattice and the diamond lattice.

outlook

* find more efficiently RG scheme in 3D to fix phase boundary
* twisted topological order

* quantum state on pyrochlore




Thank you



T-matrix

- In toric code: [¥q,8) = (21)a(32)6\¢0,0>

77=:<¢a55471¢%m5>

SO, 2)) (P(T,
* gt\zif) \2 )“§¢( 3

//Jf I)|¢(7 1)>

. \'\. -
'\...\, AR WIS S

Z7T

1) => self statistics




2D Z, (symmetry) topological order phase

2d SPT
* The ZN SPT phase with deformation * Topological invariant
Z, SPT symmetry breaking Z, SPTO ( (1) (1) g 8 \
1 8 =—0760 0 g.,=0760 4 g 00 (D" O

00 0 (—1)’3

[Hung & Wen, 2014]
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* The norm is equal to the
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partition function of 2D
classical Ising model on
triangular lattice

g. = 3792 = —(0.759835




Tensor network scheme for modular Sand T
matrices (tnST)

. . N Oulr)
* Creating the basis set |y(h,, h,)) vt e
- T S o7
by inserting string operator (TO) R ="
symmetry twist (SPT) Ov (1) Ort{fhz) O (hy)

* Simulating the rotation and the Dehn twist

(W (R, Py ) [E3 (o )>=<¢(h;,h;)\¢(hx,hxhy)>
(i, 1) |88 (s hy)) = (b (R 1y )b By, B ).

* Creating the double tensor and double
MPOQO'’s to determine the wave function

overlap

| Huang and Wei 2016]



