A new renormalization group on higher dimensional tensor networks

> Daisuke Kadoh (加堂大輔) NCTS, National Tsing-Hua Univ.

TNSAA 2019–2020 at National Chengchi Univ. Dec. 6, 2019

Kadoh and Nakayama, arXiv:1912.02414

Motivation

- Models and methods with sign problem
 - QCD at finite density and theta vacuum
 - SUSY and chiral gauge theories
 - Hubbard model
 - real-time dynamics
- Tensor Network method [Levin-Nave, 2007]

no stochastic process & no sign problem

Contents

- 1. Motivation
- 2. Tensor renormalization group
- 3. Renormalization group on a triad network
- 4. Future outlook

2. Tensor renormalization group

Graphical notation

Singular value decomposition

• N x N matrix T_{IJ}

$$T_{IJ} = \sum_{m=1}^{N} U_{Im} \sigma_m V_{mJ}$$

singluar values $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_N \ge 0$

$$\approx \sum_{m=1}^{D_{\rm cut}} S_{Im} S'_{mJ} \qquad D_{cut} < N \qquad \qquad S_{Im} = S_{Im} S'_{mJ} = S'_$$

$$S_{Im} = \sqrt{\sigma_m} U_{Im}$$
$$S'_{mJ} = \sqrt{\sigma_m} V_{mJ}$$

SVD of tensor

Tensor renormalization group

Levin-Nave, 2007 SS S T S T Т Т Т Т S S S S SS S S T Т Т Т Т SS, <u>s</u>s SS SS T T Т Т Т Т <u>ssssss</u>s</u> T? Т Т Т Т Т <u>sssss</u> SS Т Т Т Т Т Т sssssss T' T т т S S S S Т

2d complex ϕ^4 theory at finite density

DK, Kuramashi, Nakamura, Sakai, Takeda, Yoshimura in preparation

Silver Blaze phenomena is clearly observed by tensor renormalization group. 3. Renormalization group on a triad network

Kadoh and Nakayama, arXiv:1912.02414

Higher-order TRG (HOTRG)

Xie et al., 2012

3d case

 $T^{(n+1)}$

(1) Make projectors from two Ts $M = T \cdot T$ $\mathcal{O}(D^{2d+2})$ diagonalization: $(UMM)U^{\dagger})_{XX'} = \sigma_X \delta_{XX'}$ U_{X,x_1x_2} : projector for x-direction

(2) Take contractions with projectors \rightarrow a renormalized tensor T'

 $\mathcal{O}(D^{4d-1})$

Can we wait?

Computation time for D=32 is a few hours for d=2. However, for d=4, it becomes...

→ Need a low-cost renormalization scheme applicable to higher dimensions

Why the cost of HOTRG is high?

tensor networks on hyper cubic lattice

The cost of contracting two 2d-rank tensors is high for large d.

2d-rank tensor

We have to reconsider a theory of tensor networks at a fundamental level.

Fundamental building blocks

Hidden structure

A tensor is obtained as a CPD form for generic lattice models with nearest neighbor interaction:

$$T_{ijklmn} = \sum_{a=1}^{r} W_{ai}^{(1)} W_{aj}^{(2)} W_{ak}^{(3)} W_{al}^{(4)} W_{am}^{(5)} W_{an}^{(6)}$$
$$= \sum_{a,b,c=1}^{r} A_{ija} B_{akb} C_{blc} D_{cmn}$$

$$A_{ija} \equiv W_{ai}^{(1)} W_{aj}^{(2)} \qquad D_{cmn} \equiv W_{cm}^{(5)} W_{cn}^{(6)}$$
$$B_{akb} \equiv \delta_{ab} W_{ak}^{(3)} \qquad C_{blc} \equiv \delta_{bc} W_{bl}^{(4)}$$

e.g.) 3d Ising model
$$W^{(\mu)} = W \equiv \begin{pmatrix} \sqrt{\cosh(\beta)} & \sqrt{\sinh(\beta)} \\ \sqrt{\cosh(\beta)} & -\sqrt{\sinh(\beta)} \end{pmatrix}$$

Triad representation of T

Triad networks and RGs

Cost of RGs on a triad network (Triad RGs) would be naturally reduced.

D^5 -cost operations

graphs with rank-3 tensors

17/30

18/30

M in the triad representation

Steps of making projectors

20/30

Projectors U can be exactly prepared at an $\mathcal{O}(D^6)$ cost in any dimension! $\mathcal{O}(D^5)$ by using a randomized SVD

Contraction of two triads

a renormalized triad

Steps of making a renormalized triad

22/30

Theoretical cost

	dimensionality			
	2	3	4	d
TRG	D^5			
HOTRG	D^7	D^{11}	D^{15}	D^{4d-1}
Anisotropic TRG [Adachi et al.,2019]	D^5	D^7	D^9	D^{2d+1}
Triad RG (this work)	D^5	D^6	D^7	D^{d+3}

Numerical test in 3d Ising model at Tc

Theoretical D-dependence is properly reproduced in actual computations.

D-dependence of free energy

The Triad RG method shows good convergence as D increases.

Free energy vs. computational time

The other methods need much more time to approach a converged value around -3.509.

4. Future outlook

Triad RGs change the time ...

Triad RGs change the time ...

