A new renormalization group on higher dimensional tensor networks

> Daisuke Kadoh (加堂 大輔) NCTS, National Tsing-Hua Univ.

TNSAA 2019-2020 at National Chengchi Univ. Dec. 6, 2019

Kadoh and Nakayama, arXiv:1912.02414

2/30 Motivation

・・・

- Models and methods with sign problem
	- ・ QCD at finite density and theta vacuum
	- ・ SUSY and chiral gauge theories
	- ・ Hubbard model
	- ・ real-time dynamics

 Tensor Network method [Levin-Nave, 2007]

no stochastic process & no sign problem

3/30 Contents

1. Motivation

- 2. Tensor renormalization group
- 3. Renormalization group on a triad network

4. Future outlook

2. Tensor renormalization group

Graphical notation and the state of $5/30$

6/30 Singular value decomposition

• N x N matrix T_{IJ}

$$
T_{IJ} = \sum_{m=1}^{N} U_{Im} \sigma_m V_{mJ}
$$

singluar values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_N \geq 0$

 N

$$
\approx \sum_{m=1}^{D_{\rm cut}} S_{Im}S'_{mJ} \qquad D_{cut} <
$$

$$
S_{Im} = \sqrt{\sigma_m} U_{Im}
$$

$$
S'_{mJ} = \sqrt{\sigma_m} V_{mJ}
$$

SVD of tensor

7/30 Tensor renormalization group

T

T

T

T

T

т

Levin-Nave, 2007 $\overline{}$ $\overline{\text{s} \ \text{s}}$ T т S T T T S S S S $\overline{\mathrm{s} \ \mathrm{s}}$ Ś S T) T T T $S S$ SS, $\overline{\mathbf{s}}$ $\overline{\mathbf{s}}$ $\overline{\text{s s}}$ T) т T T T S_S/S_S $\overline{\mathbf{s}}$ $\overline{\mathbf{S}}$ т T) T T Т \mathbf{S} \mathbf{S} S_{Δ} $\overline{\mathbf{s}}\ \mathbf{s}$ $\sqrt{\mathrm{s/s}}$ T т T T т $\frac{1}{s}$ s s $\frac{s}{s}$ s s T) T т т т $S S$ $S S$ $\left(\mathrm{T}\right)$

$$
Z = \sum_{i,j,\dots} T_{ijkl} T_{lmno} \dots \approx \sum_{i,j,\dots} S^{(1)} S^{(2)} S^{(3)} S^{(4)} \dots = \sum_{m,n,\dots} T'_{mnpq} T'_{mkrs} \dots
$$

$$
T'_{ijkl} = \sum_{abcd} S^{(1)}_{abi} S^{(2)}_{bcj} S^{(3)}_{cdk} S^{(4)}_{dal}
$$

$$
Z \approx \sum_{i,j=1}^{D_{cut}} \tilde{T}_{ijij} \qquad \qquad \qquad \# \text{ of } T' = \frac{\# \text{ of } T}{2}
$$

2d complex ϕ^4 theory at finite density

DK, Kuramashi, Nakamura, Sakai, Takeda, Yoshimura in preparation

Silver Blaze phenomena is clearly observed by tensor renormalization group.

3. Renormalization group on a triad network

Kadoh and Nakayama, arXiv:1912.02414

Higher-order TRG (HOTRG) 10/30

 $V^{(n)}$

 $M^{(n)}$

 $T^{(n+1)}$

 $V^{(n)}$

 $U^{(n)}$ \boldsymbol{X}'

3d case

 $M =$

Xie et al., 2012(1) Make projectors from two T s $M=T\cdot T$ diagonalization: $(U(MM)U^{\dagger})_{XX'} = \sigma_X \delta_{XX'}$

 U_{X,x_1x_2} : projector for x-direction

(2) Take contractions with projectors \rightarrow a renormalized tensor T'

Can we wait?

Computation time for D=32 is a few hours for d=2. However, for d=4, it becomes…

 \rightarrow Need a low-cost renormalization scheme applicable to higher dimensions

Why the cost of HOTRG is high?

tensor networks on hyper cubic lattice

The cost of contracting two 2d-rank tensors is high for large d.

2d-rank tensor

We have to reconsider a theory of tensor networks at a fundamental level.

13/30 Fundamental building blocks

Hidden structure and the total methods of $14/30$

A tensor is obtained as a CPD form for generic lattice models with nearest neighbor interaction:

$$
T_{ijklmn} = \sum_{a=1}^{r} W_{ai}^{(1)} W_{aj}^{(2)} W_{ak}^{(3)} W_{al}^{(4)} W_{am}^{(5)} W_{an}^{(6)}
$$

$$
= \sum_{a,b,c=1}^{r} A_{ija} B_{akb} C_{blc} D_{cmn}
$$

$$
A_{ija} \equiv W_{ai}^{(1)} W_{aj}^{(2)} \qquad D_{cmn} \equiv W_{cm}^{(5)} W_{cn}^{(6)}
$$

$$
B_{akb} \equiv \delta_{ab} W_{ak}^{(3)} \qquad C_{blc} \equiv \delta_{bc} W_{bl}^{(4)}
$$

e.g.) 3d Ising model
$$
W^{(\mu)} = W \equiv \begin{pmatrix} \sqrt{\cosh(\beta)} & \sqrt{\sinh(\beta)}\\ \sqrt{\cosh(\beta)} & -\sqrt{\sinh(\beta)} \end{pmatrix}.
$$

Triad representation of T

16/30 Triad networks and RGs

Cost of RGs on a triad network (Triad RGs) would be naturally reduced.

$D⁵$ -cost operations

graphs with rank-3 tensors

17/30

18/30 Higher-order TRG (HOTRG)

 \mathbf{X}^{\prime}

Xie et al., 2012

$$
M = T \cdot T
$$

$$
(\underbrace{U(MM)}_{\infty}U^{\dagger})_{XX'} = \sigma_X \delta_{XX'}
$$

$$
U_{X,x_1x_2} : \text{projector}
$$

$$
\mathcal{O}(D^{2d+2})
$$

Contractions for making a renormalized tensor

 (D^{4d-1})

M in the triad representation 19/30

20/30 Steps of making projectors

Projectors U can be exactly prepared at an $\mathcal{O}(D^6)$ cost in any dimension! $\mathcal{O}(D^5)$ by using a randomized SVD

21/30 Contraction of two triads

a renormalized triad

Steps of making a renormalized triad 22/30

23/30 Theoretical cost

24/30 Numerical test in 3d Ising model at Tc

Theoretical D-dependence is properly reproduced in actual computations.

D-dependence of free energy

The Triad RG method shows good convergence as D increases.

26/30 Free energy vs. computational time

The other methods need much more time to approach a converged value around -3.509.

4. Future outlook

Triad RGs change the time …

Triad RGs change the time …

