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DMRG is extremely successful in (quasi)-1D

• Gold standard for gapped and even some 
gapless/critical models 

• Time evolution through TEDB/t-DMRG 
• Can simulate systems where one 

dimension is much longer than the other — 
infinite cylinders

Motruk et al. PRB 93(15) 155139



Canonical Form Through Matrix Decomposition

M Q R=

• Split single tensor into unitary  and residual  

• Can also use SVD decomposition, allowing truncation of bond dimension 

Q R
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Left-canonical: Right-canonical:̂A† ̂A = 𝕀 B̂B̂† = 𝕀



Canonical Form Makes DMRG Fast
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DMRG Will Never Be Able To Access Full 2D

• Size of virtual indices must grow 
exponentially in one of the dimensions 

• Because of snaking, correlations 
become long distance in the MPS, 
which inflates χ
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Our Goal: Extend To Full Two Dimensions

• Interesting physics in 2D 
• Time evolution in 2D 
• DMRG for critical models can stall out at 

4-6 ladder legs 
• Many interesting models have “fermion 

sign problem” 
• Exact diagonalization cannot reach large 

sizes



PEPS is the 2D Analogue of MPS

• “Projected Entangled Pair States” 
• Originally developed by F. Verstraete and 

J. I. Cirac in arXiv:cond-mat/0407066 
• Each tensor has virtual indices connecting 

it to all its neighbors 
• PEPS can efficiently represent area-law 

and critical states in 2D
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Calculating Observables is Hard

• Performing exact contraction of 
the entire PEPS is exponentially 
hard in bond dimension 

• Instead, treat contractions as 
iterative MPO-MPS products 
and truncate after each 

• Lose some accuracy, but 
hopefully not too much
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“Why not use iPEPS?”
• iPEPS optimizes a “representative” tensor which is infinitely tiled 
• Requires a system with translation invariance — what about disorder? 
• Can be difficult to handle non-square geometries 
• iPEPS and finite PEPS both have their strengths, and both are interesting

Orus & Vidal, PRB 80(9), 094403



Must Develop Canonical Form for PEPS

• Because of loop structure of PEPS, it’s impossible to exactly represent 
 with a perfect unitary at fixed bond dimension 

• If you can cope with infinite bond dimension, the world is your oyster 

• Our approach approximates  while enforcing unitarity 
• There are many possible canonization schemes for PEPS
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Our Approach: Analogy of QR decomposition

Mi,0 Qi,0 Ri,0

Mi,1 Qi,1 Ri,1

Mi,2 Qi,2 Ri,2

Mi,3 Qi,3 Ri,3

=

M Q R

• Treat column of PEPS as “MPO” 
• Split into: 

• unitary “Q”-like MPO which carries 
physical degrees of freedom 

• remainder “R”-like MPO which is 
multiplied into the next column 

• We do not actually perform a QR 
decomposition!



What Do We Mean By Unitary? 
Simpler 1D Case:
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What Do We Mean By Unitary?
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Construct environment for each element of Q

Q
†
i,0

M
†
i,0

Q
†
i,1

M
†
i,1

Q
†
i,2

M
†
i,2

Q
†
i,3

M
†
i,3

Mi,0

Mi,1

Mi,2

Mi,3

Qi,0

Qi,1

Qi,2

⟨MQ |MQ⟩ = (MQ)†(MQ)
= Q†M†MQ

Now compute at each row the 
unitary  with best overlap with its 
environment. This  then forces:
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Polar decomposition finds unitary with greatest 
overlap with Qi
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Generate  from  and R Q M
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Repeat until  > cutoffQRM/ |M |2
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For Full Unitarity, Canonization Within A Column
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• Simple SVD, as in 1D MPS case 
• Norm at tensor to-be-optimized is exactly 1 
• After each optimization, restore canonical 

form with SVD again as in DMRG



Consequences Of Our Method For PEPS

• We can use an iterative regular eigensolver, rather than a general 
eigensolver or gradient descent 

• Fast(er) computation of observables 
• We broke translation invariance, but we are using finite PEPS anyway 

• At fixed , can have inexact representation of  that is exactly unitary or 
exact representation of  that is not quite unitary 

• Stopping canonization step early can undo optimization progress
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Some Other Strategies Exist

• Zaletel & Pollmann, arXiv:1902.05100 
• Haghshenas, O’Rourke, and Chan, arXiv:1903.03843



Case Study: Antiferromagnetic 
Heisenberg Model on Square Lattice

Ĥ = ∑
⟨i, j⟩

̂ ⃗S i ⋅ ̂ ⃗S j
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• Divergence of PEPS per-site energy from QMC goes 
down with increasing bond dimension 

• No sign problem - compare to QMC SSE results 
• Slight “jumps” in divergence due to less-faithful 

gauges, yet simulation recovers



Reimplementation in Julia led to GPU speedups
• Rewrote ITensor in Julia language, 

available to all at https://github.com/
ITensor/ITensors.jl 

• New GPU backend — huge speedup 
on PEPS code — available at https://
github.com/ITensor/ITensorsGPU.jl 

• GPU code is based on NVIDIA’s 
CuTensor library

https://github.com/ITensor/ITensors.jl
https://github.com/ITensor/ITensors.jl
https://github.com/ITensor/ITensors.jl
https://github.com/ITensor/ITensorsGPU.jl
https://github.com/ITensor/ITensorsGPU.jl
https://github.com/ITensor/ITensorsGPU.jl


There’s Still Much Not Understood About PEPS

• Does the canonization restrict what states can be represented with PEPS? 
• Recent paper by Zaletal et al. shows almost all gapped states can be 

represented by canonized PEPS 
• Are there canonization schemes best suited to particular states? 
• More efficient/faithful methods of performing canonization?



Many Possible Improvements & Applications Exist 

• Two-site optimization — could capture quantum fluctuations better? 
• Long range interactions 
• Geometries beyond the square lattice 
• More interesting models: J1-J2, disordered systems, topological models… 
• Quantum chemistry 
• More inspiration from DMRG: growing, symmetries, time evolution, finite 

temperature
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