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Motivation

Gauge field theories

» (Gauge) field theories are central
for many aspects in physics
» Condensed matter physics

* Toric Code
+ Topological order
» Fractional quantum Hall states

» Standard model of particle



Motivation

Lattice Field Theory
e Conventional approach: discretize space-time on a lattice

» After Wick rotation the path integral can be evaluated
numerically on the lattice
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Motivation

Lattice Field Theory
» Highly successful for static properties such as mass spectra

* No real-time dynamics

» Sign problem/complex action problem even for certain static
problems




Motivation

Tensor Networks as a numerical tool to solve Lattice Field Theories

Computing partition functions

* Write the partition function
as a Tensor Network




Motivation

Tensor Networks as a numerical tool to solve Lattice Field Theories

Computing partition functions

* Write the partition function
as a Tensor Network

» Contract the resulting
network (approximately)

= TRG and TNR approaches




Motivation

Tensor Networks as a numerical tool to solve Lattice Field Theories

Computing partition functions TNS to approach the Hamiltonian

* Write the partition function * TNS as a variational class

as a Tensor Network
¥ - OOOO©

Z =

» Contract the resulting
network (approximately)

= TRG and TNR approaches




Motivation

Tensor Networks as a numerical tool to solve Lattice Field Theories

Computing partition functions TNS to approach the Hamiltonian

* Write the partition function * TNS as a variational class

as a Tensor Network
¥ - OOOOO

Z =

* Numerical algorithms for

» Contract the resulting v Ground states
v/ Low-lying excitations
v/ Thermal states
= TRG and TNR approaches 5 Tiee avellmier

network (approximately)




Motivation

Tensor Networks as a numerical tool to solve Lattice Field Theories

Computing partition functions TNS to approach the Hamiltonian

* Write the partition function * TNS as a variational class

as a Tensor Network
¥ - OOOOO

* Numerical algorithms for
v/ Ground states
v/ Low-lying excitations
v/ Thermal states

= TRG and TNR approaches T eliiien

/ =

» Contract the resulting
network (approximately)

In both approaches there is no sign problem!




Motivation
Tensor Networks as a numerical tool to solve Lattice Field Theories

TNS to approach the Hamiltonian

Computing partition functions
* TNS as a variational class

» Write the partition function
as a Tensor Network

oo
¥ = GHOOHS
Z— 44
L—H * Numerical algorithms for

v/ Ground states

» Contract the resulting 7 Low-Ivi S
ctwork (o oximatel ow-lying excitations
network (approximately) ' Thermal states

= TRG and TNR approaches O Time evolution

In both approaches there is no sign problem!
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» Continuous (gauge) symmetries lead to infinite dimensional
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Motivation

General strategy
o Hamiltonian formulation
» Choose a Hilbert space with an appropriate basis
» Continuous (gauge) symmetries lead to infinite dimensional
Hilbert spaces

» Truncate the basis
» Quantum link models
» Integrate the gauge degrees of freedom out

= Common ingredients for quantum simulation




@® WVotivation
@ Abelian Lattice Gauge Theory: The Schwinger model

® Non-Abelian Lattice Gauge Theory




The Schwinger model/QED in 1+1 dimensions

Continuum formulation

» Euclidian time Lagrangian of the model

t N

kinetic energy + coupling to the gauge field mass term dynamics of gauge field

P = <¢1) , D=0, + igAu, Fuw = 9,A, — 9,A,

V2




The Schwinger model/QED in 1+1 dimensions

Continuum formulation

» Euclidian time Lagrangian of the model

t N

kinetic energy + coupling to the gauge field mass term dynamics of gauge field

P = <¢1> , D=0, + igAu, Fuw = 9,A, — 9,A,

V2




The Schwinger model/QED in 1+1 dimensions

Continuum formulation

» Euclidian time Lagrangian of the model

t \ \

kinetic energy + coupling to the gauge field mass term dynamics of gauge field  topological 6-term

" .
)= <¢;> , D, =08, +igA., Fu =0,A, —d,A,, 6cl0,2n)

* Simplest nontrivial gauge theory with matter




The Schwinger model

Lattice Hamiltonian formulation
» Kogut-Susskind staggered fermions in temporal gauge A% =0
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The Schwinger model

Lattice Hamiltonian formulation
» Kogut-Susskind staggered fermions in temporal gauge A? = 0
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kinetic part + coupling to gauge field T— staggered mass term electric energy

. single-component fermionic field o, Ly = i0pm
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Lattice Hamiltonian formulation
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Numerical simulation with Matrix Product States
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The Schwinger model

Numerical simulation with Matrix Product States

* Map fermions to spins with a Jordan-Wigner transformation

¢n - Hk<n(iai)o-;

N O e

= Model can be solved with standard MPS techniques

» Extrapolate to the continuum similar to lattice calculations




Spectral properties at § = 0




The Schwinger model

Numerical simulation with Matrix Product States

# Various approaches
» DMRG
> Integrating out the gauge field and using MPS with OBC
» Truncating the gauge field and using uniform MPS




The Schwinger model

Numerical simulation with Matrix Product States
# Various approaches
» DMRG

> Integrating out the gauge field and using MPS with OBC
» Truncating the gauge field and using uniform MPS
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Behavior at 6 # 0




The Schwinger model

Continuum predictions for the behavior
* Small m/g: mass perturbation theory
» Energy density in units of the coupling
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The Schwinger model

Continuum predictions for the behavior
* Small m/g: mass perturbation theory
» Energy density in units of the coupling

Eo(m, 9)
g2

2 2
m wer [(m
=ca— g 20) +
¢ 2 cos(6) T (g) (2 cos(20) + c3)

» Electric field in units of the coupling
F(m,0) 0 &(0, m)
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The Schwinger model

Results for the energy density
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The Schwinger model

Results for the electric field
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The Schwinger model

Results for the topological susceptibility
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Results for the topological susceptibility
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The Schwinger model

Results for the topological susceptibility
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Finite temperature




The Schwinger model

Nonzero temperature with MPS
* Mixed state at inverse temperature 5 =1/T

p(B) o exp (—BH) = exp (—§H) - (—§H)
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The Schwinger model

Nonzero temperature with MPS
* Mixed state at inverse temperature 5 =1/T

p(B) o exp (—BH) = exp (—§H) - (—%H)
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The Schwinger model

Nonzero temperature with MPS
® Order parameter for chiral symmetry breaking

Z_@ . _ nl—i—oz
g g Nagz( D

0.06)

-0.01




Phase structure for two flavors at finite density




The multiflavor Schwinger model

Lattice Hamiltonian formulation
o Kogut-Susskind staggered fermions in temporal gauge A° = 0
. N-1 F
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The multiflavor Schwinger model

Lattice Hamiltonian formulation
» Kogut-Susskind staggered fermions in temporal gauge A? = 0
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kinetic part + coupling to gauge field mass term chemlcal potential electrlc energy
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The multiflavor Schwinger model

Lattice Hamiltonian formulation
» Kogut-Susskind staggered fermions in temporal gauge A? = 0

5 S
n=1 f=1
N F
(o b
n=1 f=1
kinetic part + coupling to gauge field mass term chemlcal potential electrlc energy
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The multiflavor Schwinger model

Previous analytic work

» Phase structure for m/g = 0 on a torus in the continuum
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Previous analytic work

» Phase structure for m/g = 0 on a torus in the continuum

® Result for the two-flavor case




The multiflavor Schwinger model

MPS approach to the multiflavor Schwinger model
» Focus on the two-flavor case at zero temperature
Fix k1 = 0 and vary kp = sign problem for Monte Carlo

.
® Use MPS with open boundary conditions
.

Fixed physical volume
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The multiflavor Schwinger model

MPS approach to the multiflavor Schwinger model

Focus on the two-flavor case at zero temperature

Fix K1 = 0 and vary kp = sign problem for Monte Carlo

Use MPS with open boundary conditions

Fixed physical volume

Vanishing fermion mass Nonvanishing fermion mass
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Out-of-equilibrium phenomena




The Schwinger model

String breaking in the Schwinger model

® Insert a pair of charges in
the bare vacuum
» Gauge invariance requires

electric flux string to form
between them

* From a certain length on it
is energetically favorable to
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SU(2) Lattice Gauge Theory

Lattice Hamiltonian formulation

» Kogut-Susskind staggered fermions in temporal gauge A® = 0
o N
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kinetic part + coupling to gauge field staggered mass term color-electric energy
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SU(2) Lattice Gauge Theory

Lattice Hamiltonian formulation
» Kogut-Susskind staggered fermions in temporal gauge A® = 0

N-1 N 5 N—1
g
H=cY ([l o ) + m X -1yeto, +5 X 02
n=1 J n=1 I n=1 ]
kinetic part + coupling to gauge field staggered mass term color-electric energy

« Two colors of fermions: d);r, =( ,¢%’T)

» Gauss law for physical states

1
L‘; — Rt?—l = Q‘rar = _¢1‘,0.a¢m a=Xx,y,z




Spectral properties




SU(2) Lattice Gauge Theory

Ground state Vector mass gap
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SU(2) Lattice Gauge Theory

Ground state
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SU(2) Lattice Gauge Theory

Entanglement entropy

# Gauge constraints are not purely local

= Not all entropy is physical
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SU(2) Lattice Gauge Theory

Entanglement entropy

# Gauge constraints are not purely local

= Not all entropy is physical
* The reduced density matrix is of the form p = @©;(p; ® 1;)

+ > piloga(2j +1) + > piS(p))




SU(2) Lattice Gauge Theory

Entanglement entropy

* MPS allow for accessing the different parts of the entropy
15 b ' '
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More results on non-Abelian LGT in 141 dimension




Non-Abelian Lattice Gauge Models

String breaking in a SU(2) LGT
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Non-Abelian Lattice Gauge Models

siring arealdng fn & S LET Phase structure of a SU(2) LGT
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Phase structure of a SU(3) LGT
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The O(3) rotor model

Continuum formulation

» Euclidean time Lagrangian of the model

1
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= Nonlinearity because of the constraint




The O(3) rotor model

Continuum formulation

» Euclidean time Lagrangian of the model

1
Lo@) = 750,n0yn, n e R3, n-n=1
28
= Nonlinearity because of the constraint
» Focus on two (1+1) dimension: v =0, 1
» Asymptotic freedom




The O(3) rotor model

Lattice discretization

® Dimensionless Hamiltonian on a lattice with spacing a

1 N N—-1
aH = %ZLi_Bannk+l
k=1

k=1

[L%, LB] = ie*PVLY, [L, nP] = ie®PTn7, [n*, n®] =0

* Hamiltonian describes chain of coupled quantum rotors
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Spectral properties

Numerical approach

» Suitable basis: angular momentum eigenstates ®]Ikmk>ﬁ:1

* Angular momentum of each rotor is unbounded

= Local Hilbert spaces are infinite dimensional

e Truncate maximum angular momentum at each site
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Spectral properties

Mass gap
* Asymptotic scaling

am = 2 al\yg = 64al\, = 12873 exp(—273)

® Numerical data
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Numerical results

Entanglement entropy
o As we approach 8 — 0 the mass gap closes
» The correlation length in lattice units £/a = 1/am diverges
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Numerical results

Entanglement entropy
o As we approach 8 — 0 the mass gap closes
» The correlation length in lattice units £/a = 1/am diverges
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Phase structure at nonvanishing chemical potential




Phase structure at nonvanishing chemical potential

Adding a chemical potential
e Conventional Monte Carlo approach: sign problem
o Lattice Hamiltonian with chemical potential

1 N N—-1
aH = %;Li—ﬁ;nknkﬂ —auQ

N
Q=) 1, [HQ=0
k=1




Phase structure at nonvanishing chemical potential

Phase structure at nonvanishing chemical potential
® Ground-state energy inside a block with charge g
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Phase structure at nonvanishing chemical potential

Phase structure at nonvanishing chemical potential
e Numerical data for fnax =4, 5 =1.2, N =80 and D = 200
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Phase structure at nonvanishing chemical potential

Phase structure at nonvanishing chemical potential

® Numerical data for 8 = 1.2 and various N, /nax
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Phase structure at nonvanishing chemical potential

Phase structure at nonvanishing chemical potential

® Numerical data for 8 = 1.2 and various N, /nax
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Phase structure at nonvanishing chemical potential

Phase structure at nonvanishing chemical potential

® Numerical data for 8 = 1.2 and various N, /nax
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Summary

To summarize
» Feasibility of addressing Lattice Field Theories with TNS has
been demonstrated

» Spectral properties
» Thermal states
» Out-of-equilibrium dynamics

» Good numerical precision attainable, possible to extract
continuum data
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To summarize
» Feasibility of addressing Lattice Field Theories with TNS has
been demonstrated
» Spectral properties
» Thermal states
» Out-of-equilibrium dynamics
» Good numerical precision attainable, possible to extract
continuum data

Outlook

* Many more interesting questions in 1+1 dimension

» Models with topological 6-term
» Quantum computing

e Study 2+1 dimensional models

Y. Kuramashi, Y. Yoshimura, J. High Energy Phys. 2019, 23 (2019)
T. Felser, P. Silvi, M. Collura, S. Montangero, arXiv:1911.09693



A. Hamiltonian lattice formulation for gauge theories

Gauge Hamiltonian formulation on the lattice
» Kogut-Susskind staggered fermions in temporal gauge A% = 0

2 N—1
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Kinetic part + coupling to gauge field staggered mass term (color)-electric energy




A. Hamiltonian lattice formulation for gauge theories

Gauge Hamiltonian formulation on the lattice

» Kogut-Susskind staggered fermions in temporal gauge A? = 0
2 N—-1
i g
=3 (H -+hc)+m2 R »of
n=

Kinetic part 4+ coupling to gauge fleld staggered mass term 4T(co|or) electric energy

» Gauss law for physical states GZ|¢)) =0
Gr? = Lra1 — ;?—1 = an Qn —

+ qn
T— external charge

dynamical charge —T




A. Hamiltonian lattice formulation for gauge theories
Gauge Hamiltonian formulation on the lattice
» Kogut-Susskind staggered fermions in temporal gauge A% = 0

-1 2 N—1

N
g
=X (Gl o [ + <) + > cpele, +E X 12
n= J n=1 I n=1 I
Kinetic part + coupling to gauge field staggered mass term (color)-electric energy

» Gauss law for physical states G2|¢)) =0
Gl=L2—-R_;— , Qn=0n+qn




B. Hamiltonian lattice formulation for gauge theories

Disentangling the gauge field for open boundary conditions

e Transformation disentangling the gauge degrees of freedom

0= Hexp <10k Z Qa)

m>k

« Hamiltonian in the rotated frame Hg = ©@HOT

Ho =€ Z <¢L¢n+1+H.c.) +m Z (—1)”¢;f,¢,, i Z Z Q2V, mQ2,




C. Euclidean time lattice Schwinger model

Continuum formulation

# Euclidian action of the model

o o - 15

kinetic energy + coupling to the gauge field mass term dynamics of gauge field
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Continuum formulation

# Euclidian action of the model

o | o i

kinetic energy + coupling to the gauge field mass term dynamics of gauge field

y Dy =0u+ igAu, Fuw = 8,A — A,




C. Euclidean time lattice Schwinger model

Lattice discretization
» Regular lattice with spacing a

# Fermionic fields: sit at the vertices of the
lattice

V(x) = n

# Derivative

0,0(x) > B = o= (Ymean + Yran)
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C. Euclidean time lattice Schwinger model

Lattice discretization

# Gauge invariance in the continuum

W}EX) U(x, y)¥(y)

U(x,y) = exp (ig /Xy dzMAM(z)> e U(1)

* Plaguette term

U, =U,(n)U,(n+ UTn—i-yU,In




C. Euclidean time lattice Schwinger model

Lattice Field Theory
# Lattice action

Smatter = »_ ;K[ U]

y

» Path integral in Euclidean time




C. Lattice Schwinger model

Continuum predictions for the behavior
» Conventional Monte Carlo approach suffers from the sign
problem for 6 # 0
» Prediction for the phase structure by Coleman

» Nontrivial topological vacuum structure gives rise to 6
» Phase structure at =7

0
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