
Tensor Product State (TPS) and 
Projected Entangled Pair State (PEPS), 
these terms are quite similar if the 
former is pronounced as T  PS

TNSAA7: 2019.12.04
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Model: Vectors of constant length on each site

*There is a variety of models according to the restriction imposed  
  on vectors. (= condition for site degrees of freedom)

*Vectors of variable length can be considered as generalizations.
… Gaussian Model,  Spherical Model,  String models, etc.

*We consider a group of statistical lattice models on square lattice, 
  that contain vectors of constant length as site variables.



Model: Vectors of constant length on each site
Interaction: Inner product between neighboring vectors

H  =  - J  Σij  Vi ・ Vj

* Additional terms and modification can be considered.

bi-quadratic interaction (non-linear)

Sum is taken over all the neighboring sites denoted by “ ij ”.
Vi  is the vector of unit length on site “ i ”.

Vi Vj

External magnetic field - Σi  Vi ・h 

Next nearest neighbor interaction - J’  Σik  Vi ・ Vk

- k Σij  (Vi ・ Vj )2

generalized bilinear interaction - L  Σik  Vi ・U(Vk)
….



Continuous case:

*each vector points on the surface of unit sphere

H  =  - J  Σij  Vi ・ Vj

Classical XY model, planar rotator
H  =  - J  Σij  cos(θi - θj)

Classical Heisenberg model

n-vector models — O(n) symmetry

Mermin-Wagner Theorem (1966) 
These models do not show any order in finite temperature.

Generalization to higher dimensional sphere for site variables 
is straight forward, though these are purely (?) mathematical.

KT transition at T ~ 0.893

O(2) symmetry

Tomita & Okabe, cond-mat/0202161 
Hasenbusch, cond-mat/0502556

O(3) symmetry

Classical ????? model O(4), O(5), … O(∞) symmetry

[ O(0) : self avoiding walk (discrete),  O(1) : Ising Model (discrete)]



H  =  - J  Σij  Vi ・ VjClassical Heisenberg model

… it is not easy to find out recent numerical result on 
classical Heisenberg model (from Ising to XY anisotropy)

Once I heard that finite size scaling for the isotropic O(3) model is difficult for some (??) reason. Does any one teach me the reason???

Ising anisotropy
XY anisotropy

O(3) >>> O(1),  discrete

O(3) >>> O(2),  continuous

anisotropic perturbations can make O(n) models discrete

?

disordered

ferro vortex

Ising XYHeisenberg



Continuous >>>> Discrete  (partially anisotropic)

H  =  - J  Σij  Vi ・ Vj

Classical XY model  >>> q-state Clock models

H  =  - J  Σij  cos(θi - θj)
q = 2 : Ising Model

each vector can point one of  
   (a) the center of faces 
   (b) the vertices 
   (c) the center of edges (optional)

What are the discrete analogues of O(n) vector models?

q = 3 : 3-state Potts Model
q = 4 : 2 x (Ising Model)

Classical Heisenberg model  >>> Polyhedron models

Variations:

q = 5,6,… : nearly? continuous

discrete 
O(2)

discrete 
O(3)



Continuous >>>> Discrete

H  =  - J  Σij  Vi ・ Vj

Classical XY model  >>> q-state Clock models

H  =  - J  Σij  cos(θi - θj)
q = 2 : Ising Model

What are the discrete analogues of O(n) vector models?

q = 3 : 3-state Potts Model
q = 4 : 2 x (Ising Model)

Classical Heisenberg model  >>> Polyhedron models

It is obvious (?) that these discrete models can be 
studied by any one of the tensor network methods.

How have these models been studied by means of TN?

Discretization induce Phase Transition(s)



square lattice classical Ising Model:
*1-dimensional vector of length 1 on each lattice — O(1) symmetry

α = 0,  β = 1/8,  γ = 7/4,  δ = 15,  η = 1/4,  ν = 1,  ω = 2*Ising universality

Low temperature Critical temperature

(arXiv:cond-mat/0409445)

H  =  - J  Σij  Si Sj

  DMRG — Nishino, cond-mat/9508111 
CTMRG — Nishino, Okunishi, cond-mat/9507087, cond-mat/9705072 
      TRG — Levin, Nave, cond-mat/0611687 
HOTRG — Xie, Chen, Qin, Zhu, Yang, Xiang, arXiv:1201.1144 
      TNR — Evenbly, Vidal, arXiv:1412.0732

* Thermodynamic snapshot 
can be obtained by means of 
tensor network method 
combined with succeeding 
measurement processes,

similar to METTS, 
minimally entangled typical 
thermal state algorithm.

(arXiv:1002.1305)



discrete angles: θ = n (2π/q)

Clock Models: H  =  - J  Σij  cos(θi - θj)

q=2: Ising Model

when q=5,6,7… the model has intermediate critical phase between 
high-temperature disordered phase and low-temperature ordered phase. 
There are two KT transitions in low and high temperature border.

  DMRG — [q=5,6] Chatelain, arXiv:1407.5955 
CTMRG — [q=6] Krcmar, Gendiar, Nishino, arXiv:1612.07611 
HOTRG — [q=6] Chen, Liao, Xie, Han, Huang, Cheng, Wei, Xie, Xiang, arXiv:1706.03455 
HOTRG — [q=5] Chen, Xie, Yu, arXiv:1804.05532 
HOTRG — [q=5,6] Hong, Kim, arXiv:1906.09036

q=3: equivalent to 3-state Potts model
q=4: equivalent to 2 sets of Ising models

(will be explained in detail tomorrow morning)



Clock Models on Hyperbolic Lattice
CTMRG — [q=5,6] Gendiar, Krcmar, Ueda, Nishino, arXiv:0801.0836
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H  =  - J  Σi  δ(Si , Sj)

q=2: equivalent to Ising model

Potts Models:
each spin takes integer values

q=3: equivalent to 3-state clock model, 2nd order phase transition
q=4: 2nd order phase transition (+marginally relevant correction)

Each vector points the vertex of (q-1)-dimensional regular simplex. 
q=3: Triangle, q=4: Tetrahedron, q=5: 5-cell (in 4-dimension), …

q=5: weak first order

CTMRG — [q=2,3] Nishino, Okunishi, Kikuchi, arXiv:cond-mat/9601078 
CTMRG — [q=5] Nishino, Okunishi, arXiv:cond-mat/9711214 
  DMRG — [q=4,5,…] Igloi, Carlon, arXiv:cond-mat/9805083 
HOTRG — [q=2~7] Morita, Kawashima, arXiv:1806.10275 
…

3D

2D

    TPVA — [q=2,3] Nishino, Okunishi, Hieida, Maeshima, Akutsu, arXiv:cond-mat/0001083 
    TPVA — [q=3,4,5] Gendiar, Nishino, arXiv:cond-mat/0102425 
HOTRG — [q=2,3] Wang, Xie, Chen, Normand, Xiang, arXiv:1405.1179

q=6,7,8, … 
[Potts models are something between Clock and Polyhedral models.]

Wu: Rev. Mod. Phys. 54, 235 (1982)



H  =  - J  Σi  δ(Si , Sj)Potts Models:

Wu: Rev. Mod. Phys. 54, 235 (1982)

Potts, Renfrey B. (1952). "Some Generalized Order-Disorder 
Transformations". Mathematical Proceedings. 48 (1): 106–109. 
Bibcode:1952PCPS...48..106P. doi:10.1017/S0305004100027419.

people prefer to cite good review(s).

That is good. Also I recommend to 
add original article(s)

How about  Ising Model ???
Ising, E. (1925), "Beitrag zur Theorie des Ferromagnetismus", Z. Phys., 31 
(1): 253–258, Bibcode:1925ZPhy...31..253I, doi:10.1007/BF02980577

https://en.wikipedia.org/wiki/Mathematical_Proceedings_of_the_Cambridge_Philosophical_Society
https://en.wikipedia.org/wiki/Bibcode
https://ui.adsabs.harvard.edu/abs/1952PCPS...48..106P
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1017%2FS0305004100027419
https://en.wikipedia.org/wiki/Bibcode
https://ui.adsabs.harvard.edu/abs/1925ZPhy...31..253I
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1007%2FBF02980577


H  =  - J  Σi  δ(Si , Sj)

q=2: equivalent to Ising model

Potts Models:
each spin takes integer values

q=3: equivalent to 3-state clock model, 2nd order phase transition
q=4: 2nd order phase transition (+marginally relevant correction)

Each vector points the vertex of (q-1)-dimensional regular simplex. 
q=3: Triangle, q=4: Tetrahedron, q=5: 5-cell (in 4-dimension), …

q=5: weak first order

CTMRG — [q=2,3] Nishino, Okunishi, Kikuchi, arXiv:cond-mat/9601078 
CTMRG — [q=5] Nishino, Okunishi, arXiv:cond-mat/9711214 
  DMRG — [q=4,5,…] Igloi, Carlon, arXiv:cond-mat/9805083 
HOTRG — [q=2~7] Morita, Kawashima, arXiv:1806.10275 
…

3D

2D

    TPVA — [q=2,3] Nishino, Okunishi, Hieida, Maeshima, Akutsu, arXiv:cond-mat/0001083 
    TPVA — [q=3,4,5] Gendiar, Nishino, arXiv:cond-mat/0102425 
HOTRG — [q=2,3] Wang, Xie, Chen, Normand, Xiang, arXiv:1405.1179

q=6,7,8, … 
[Potts models are something between Clock and Polyhedral models.]

Wu: Rev. Mod. Phys. 54, 235 (1982)



Regular Polyhedron Models: 

q=4: Tetrahedron Model, corresponds to q=4 Potts Model

Part II

H  =  - J  Σij  Vi ・ Vj

Each site vector can point one of the 
vertices the regular polyhedron.

q=6: Octahedron Model (weak first order)
q=8: Cube Model, equivalent to 3-set of Ising Model
q=12: Icosahedron Model (2nd order)
q=20: Dodecahedron Model (2nd order)

Variants:

If one considers semi-regular polyhedrons, or truncated polyhedrons, one can 
further define discrete Heisenberg models. Also those cases where each site 
vector can point centers of faces or edges can be considered. By such 
generalizations, q= 18,24,36,48,60,72,90,120,150,180 can be considered.

* Do these models show KT transition?  (…no, when there is no anisotropy) 
* Is there any model that shows multiple phase transitions?  (… no, in reality)

* We conjecture that some of these variants show multiple phase transitions.

MC — Surungan, Okabe, arXiv:1709.03720



previous studies

Tetrahedron

2nd Order
［Surungan&Okabe, 2012］

↓
1st Order

[Roman,et al., 2016]

2nd Order
[Patrascioiu, et al., 2001]

[Surungan&kabe, 2012]

KT?
[Patrascioiu, et al., 1991]

↓
2nd Order

［Surungan&Okabe, 2012］

MC
MC

MC

MC
MC

CTMRG

is there any high precision 
numerical study by TN?

Cube: Ising x 3
  (Exactly Solved)

Octahedron Icosahedron
Dodecahedron

… a vanguard for TN study

arXiv:hep-lat/0008024

arXiv:1709.03720 arXiv:1709.03720



Octahedron Model (q=6)
CTMRG — Krcmar, Gendiar, Nishino, arXiv:1512.09059

0.90838 0.90840 0.90842 0.90844T

-2.07355

-2.07354

-2.07353

-2.07352

-2.07351

-2.07350

f 0
Fixed BC
Free BC

t = 0
T = 0.908413

Latent Heat: Q = 0.073

Free energy per site f(T) is calculated by CTMRG under fixed or free 
boundary conditions at the border of the system.

No singularity exists in f(T),  
two lines cross at T = 0.908413.

Discussion: What kind of perturbation makes the model critical?

This model is characteristic 
in the point that interaction 
energy is either 1, 0, or -1.



Truncated Tetrahedron Model (q=12)
CTMRG — Krcmar, Gendiar, Nishino, arXiv:1512.09059

FIG. 1. Truncated tetrahedron (shown in the middle,
parametrized by t = 0.5) is depicted as the interpolation between the
octahedron (on the left for t = 0) and the tetrahedron (on the right
for t = 1).

a Generalization to  

each site vector points to one of the vertices.

t = 0 
octahedron

t = 1 
tetrahedron

1st

Ferro

Z2
D3

disorder q=4 Potts

Ising q=3 Potts

1st
* This model shows 

multiple phase transitions.

* This kind of generalization 
can be considered for 
other polyhedron modles.



previous studies

Tetrahedron

2nd Order
［Surungan&Okabe, 2012］

↓
1st Order

[Roman,et al., 2016]

2nd Order
[Patrascioiu, et al., 2001]

[Surungan&kabe, 2012]

KT?
[Patrascioiu, et al., 1991]

↓
2nd Order

［Surungan&Okabe, 2012］

MC
MC

MC

MC
MC

CTMRG

is there any high precision 
numerical study by TN?

Cube: Ising x 3
  (Exactly Solved)

Octahedron Icosahedron
Dodecahedron

… a vanguard for TN study

arXiv:hep-lat/0008024

arXiv:1709.03720 arXiv:1709.03720



✓ Symmetry axis 
    Centers of edges (two-fold) 
    Centers of faces (three-fold)  
    Two opposite vertices (five-fold)

What kind of symmetry breaking happens at Tc ? 
Is there multiple phase transitions? 
Any possibility of KT transition?

Icosahedron Model: 

Numerical Analysis by CTMRG under m = 500

dimension of CTM: 6000
calculations were done on K-computer by Ueda.

… there would be some trick to reduce the 
site degrees of freedom in advance …

arXiv:1709.01275



prob. of directions under fixed B.C.

5-fold rotational symmetry is preserved in low temperature

arXiv:1709.01275



Spontaneous Magnetization

strong m-dependence exists
arXiv:1709.01275



Finite-  scaling𝑚
✓ Finite size scaling [Fisher and Barber, 1972, 1983]  

    + Finite-  scaling at criticality𝑚
Nishino, Okunishi and Kikuchi, PLA (1996)
Tagliacozzo, Oliveira, Iblisdir, and Latorre, PRB (2008)
Pollmann, Mukerjee, Turner, and Moore, PRL (2009)
Pirvu, Vidal, Verstraete, and Tagliacozzo, PRB (2012)

: Intrinsic length scale of the system𝑏

HU	et	al.,	PRE	(2017)



✓ 𝑏 ∼ 𝜉(𝑚, 𝑡)

 and : 1st and 2nd eigenvalues of ™𝜁1 𝜁2

HU	et	al.,	PRE	(2017)
✓ Correlation length

✓ Scaling hypothesis

We use the scaling library developed by Harada.

arXiv:1102.4149



Finite-  scaling for 𝑚 𝜉 ✓ Bayesian scaling  
[Harada, PRE, 2011]

✓ 0.5550  

1.617  
0.898

𝑇c =
𝜈 =
𝜅 =

arXiv:1102.4149



Finite-  scaling𝑚 ✓  𝛽 = 0.129

0.5550  

1.617  
0.898

𝑇c =

𝜈 =
𝜅 =

arXiv:1709.01275



Entanglement Entropy

Vidal, Latorre, Rico, and Kitaev, PRL, 2003
Calabrese and Cardy, J. Stat. Mech., 2004

: non-universal constant
: central charge

𝑎
𝑐



✓ One parameter 

 

✓ Empirical relation  
 
 

  

 
This work:  

 

𝑐 = 1.894

𝜅 =
6

𝑐( 12/𝑐 + 1)
6

𝑐( 12/𝑐 + 1)
− 𝜅 = 0.003

0.5550  

1.617  
0.898

𝑇c =

𝜈 =
𝜅 =

[ Pollmann, Mukerjee, Turner, and Moore, PRL, 2009 ]

Entanglement Entropy



Icosahedron model

Tc ¥nu ¥kappa ¥beta c

0.5550(1) 1.62(2) 0.89(2) 0.12(1) 1.90(2)

Phys. Rev. E 96, 062112 (2017)

✓ there is a phase transition of 2nd order

✓ Ordered phase has five-fold rotational symmetry 

arXiv:1709.01275



Current study

Tetrahedron

2nd Order
［Surungan&Okabe, 2012］

↓
1st Order

[Roman,et al., 2016]

2nd Order
[Patrascioiu, et al., 2001]

[Surungan&kabe, 2012]

KT?
[Patrascioiu, et al., 1991]

↓
2nd Order

［Surungan&Okabe, 2012］

MC
MC

MC

MC
MC

CTMRG

is there any high precision 
numerical study by TN?

Cube: Ising x 3
  (Exactly Solved)

Octahedron Icosahedron
Dodecahedron

… a vanguard for TN study

arXiv:hep-lat/0008024

arXiv:1709.03720
arXiv:1709.03720

Next Target
20 site degrees 
of freedom



Current study

Tetrahedron

2nd Order
［Surungan&Okabe, 2012］

↓
1st Order

[Roman,et al., 2016]

2nd Order
[Patrascioiu, et al., 2001]

[Surungan&kabe, 2012]

KT?
[Patrascioiu, et al., 1991]

↓
2nd Order

［Surungan&Okabe, 2012］

MC
MC

MC

MC
MC

CTMRG

is there any high precision 
numerical study by TN?

Octahedron Icosahedron
Dodecahedron

… a vanguard for TN study

arXiv:hep-lat/0008024

arXiv:1709.03720
arXiv:1709.03720

… preliminary 
(but extensive) 
calculation 
suggests that 
there is only a 
phase transition 



!" = 0.441	
) = 3.12		
, = 0.860

Finite m scaling 
(probably) supports 
the absence of 
massless area

matrix size 16000



Current study

Tetrahedron

2nd Order
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↓
1st Order

[Roman,et al., 2016]

2nd Order
[Patrascioiu, et al., 2001]

[Surungan&kabe, 2012]

KT?
[Patrascioiu, et al., 1991]

↓
2nd Order

［Surungan&Okabe, 2012］

MC
MC

MC

MC
MC

CTMRG

is there any high precision 
numerical study by TN?

Octahedron Icosahedron
Dodecahedron

… a vanguard for TN study

arXiv:hep-lat/0008024

arXiv:1709.03720
arXiv:1709.03720

… preliminary 
(but extensive) 
calculation 
suggests that 
there is only a 
phase transition 



Future studies

Dodecahedron

Current Target

24 state

30 state

90 state

These models might show  
multiple phase transitions, 
since there are inequivalent 
directions.



Akiyama et al, arXiv:1911.12978

Higher Dimension (inner space)

Tetrahedron
>>> n-symplex (in n+1 dim.)

Cube
    >>> Hyper Cube

Octahedron
    >>> 16-cell, 32, 64, …

n-state Potts Model

n-set of Ising Model

Characteristic 4-polytopes

24-cell

120-cell

600-cell

Weak First Order? in 4D??

(possible to fill 4D space 
only by this polytope.)

numerical 
challenges



It is possible to treat the case that each site vector can point arbitrary 
lattice point in N-dimensional space. (= 2D lattice embedded to N-dim. 
space.)

Further Generalizations:

How can one apply tensor network method to spherical model? 
(it is not straight forward to apply TN for exactly solved models.)

What is the role of TN in higher dimensional lattice? (>>> day 3 in TNSAA7)

What is the effect of perturbation/deformation with polyhedral symmetry 
to the continuous O(3) model?


