

Anisotropic tensor renormalization group and BTRG

The University of Tokyo, Tsuyoshi Okubo

Ref. D. Adachi, T. Okubo, and S. Todo, arXiv:1906.02007

Collaborators

Department of Physics, The University of Tokyo

Daiki Adachi

Synge Todo

Contents

- Tensor renormalization group for high dimensions
- Anisotropic tensor renormalization group: ATRG
- Bond-weighted TRG: BTRG....
- Summary

Tensor network renormalization group

Purpose: approximate contraction of tensor network by using "coarse-graining" of the network

Tensor Renormalization Group (TRG) algorithm

TRG M. Levin and C. P. Nave, Phys. Rev. Lett. **99**, 120601 (2007)

Computation cost: $O(D^5)$

Memory: $O(D^3)$

Higher Oder Tensor Renormalization Group (HOTRG)

Anisotropic coarse-graining by using HOSVD instead of SVD

Better accuracy than TRG, although,

Computation cost: $O(D^7) > O(D^5)$ (TRG)

Application to high dimensions

Interests in

- 3d classical systems
- 2d and 3d quantum systems
- Much higher dimensions...

We want to perform tensor network RG for high dimensions!

However,

TRG: Not easy to generalize to high dimensions.

HOTRG: Easy to generalize to high dimensions, but its cost is $O(D^{4d-1})$

Is it possible to construct lower cost algorithm?

 $d=3: O(D^{11})$

 $d=4: O(D^{15})$

Anisotropic TRG = ATRG

D. Adachi, T. Okubo, and S. Todo, arXiv:1906.02007

Central idea of Anisotropic TRG

In ATRG, we coarse-grain tensors anisotropically as HOTRG:

In order to reduce the computation cost, we decompose the local tensor into small pieces before performing coarse-graining.

Recipe of ATRG

D. Adachi, T. Okubo, and S. Todo, arXiv:1906.02007

Recipe of ATRG

D. Adachi, T. Okubo, and S. Todo, arXiv:1906.02007

X

Different from HOTRG, this step can be done with $O(D^5)$

D

Summary of 2D ATRG

D. Adachi, T. Okubo, and S. Todo, arXiv:1906.02007

Memory storage: $O(D^3)$

* We do not explicitly create 4-leg tensor. (We need only 3-leg tensors!)

Computation time: $O(D^5)$

* By using *partial SVD* technique, such as the Arnoldi method, we can reduce SVD cost.

We can perform HOTRG like anisotropic coarse-graining with smaller cost!

Generalization to high dimension

D. Adachi, T. Okubo, and S. Todo, arXiv:1906.02007

We can easily generalize this to high dimensions

Key points:

Before coarse graining, we decompose a local tensor into two tensors.

*We may consider more decompositions.

Memory storage: $O(D^{d+1})$

Computation time: $O(D^{2d+1})$

HOTRG

Memory: $O(D^{2d})$

Time: $O(D^{4d-1})$

2d square lattice Ising model at T_c

At the same bond dimension, accuracy of ATRG is between those of TRG and HOTRG.

HOTRG is better?

No so straightforward!

Benchmarks

The computation costs are different between ATRG and HOTRG.

TRG, ATRG: $O(D^5)$ HOTRG: $O(D^7)$

Leading order computation time:

$$\tau \equiv \begin{cases} D^5 & \text{TRG and ATRG} \\ D^7 & \text{HOTRG} \end{cases}$$

ATRG is the best!

(ATRG is ~10² faster than HOTRG!)

Benchmarks

D. Adachi, T. Okubo, and S. Todo, arXiv:1906.02007

3d square lattice Ising model at *T*

In order to obtain same free energy value, ATRG needs ~10³ times smaller computation cost than HOTRG.

Bond-weighted TRG = BTRG

D. Adachi, T. Okubo, and S. Todo, in preparation

Why ATRG is better than TRG?

2d square lattice Ising model at T_c

ATRG is better than TRG, although the cost is same.

Why?

Key point: weight of bonds

In ATRG, we assign singular values to only one tensor.

In TRG, usually it is divided to both tensors.

Disadvantage of local SVD truncation

Local SVD is not necessarily the best "D-rank" approximation for the whole TN (the partition functions).

We need to consider the "environment" for better truncations.

This is the key idea of SRG (second renormalization)

Basic strategy of SRG

Z. Y. Xie, et al Phys. Rev. Lett. 103, 160601 (2008).

Better truncation: truncation based on SVD of \tilde{T}

Disadvantage of SRG:

In order to obtain M^e we need iterative calculations, which increases computation cost.

Mean field environment

As an approximated M^e , we might use "weight" of bonds as mean-field environment.

—O—: Diagonal non-negative matrix

How can we estimate the bond weight?

- We can estimate it from the singular values of a local tensor.
 - 1. The weights are repeatedly improved by the singular values of $ilde{T}$.

Mean-field SRG. H.-H. Zhao et al, PRB 81, 174411 (2010).

2. Alternatively, we can consider the renormalization of extended tensor networks which contains bond weight explicitly.

Summary

- We introduced Anisotropic TRG (ATRG)
 - By using ATRG, we can contract a d-dimensional TN with O(D^{2d+1}) computation cost and O(D^{d+1}) memory.
 - When we look accuracy per computation time, ATRG is much more efficient than HOTRG.
- We considered TRG of bond-weighed TN (BTRG)
 - By choosing proper exponent, BTRG shows better accuracy than HOTRG.
 - BTRG is easily generalized for other lattices and HOTRG.