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Scale transformation: refine the wavefunction by local RG transformations

Basic Idea of Renormalization GroupBasic Idea of Renormalization Group

To find a small but optimized basis set to represent accurately a quantum state
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Is Quantum State Renormalizable?
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Use a sub-system as a 

pump to probe the other 

part of the system

Importance is measured 

by the entanglement or 

reduced density matrix

System 

block

Environment

block

H

sys envTr e  −=

Pump-Probe

reduced density matrix

How to Determine the Optimized Basis States?



Faithful representation of partition functions of classical/quantum models

Variational wavefunctions of ground states of quantum lattice models

Tensor-Network State



Example: Tensor-network representation of the Clock Model

𝐻 = −෍

⟨𝑖𝑗ۧ

cos 𝜃𝑖 − 𝜃𝑗

q-state clock model = discretized XY-model

𝜃𝑖 =
2𝜋𝑛

𝑞
(𝑛 = 0,… , 𝑞 − 1)



Example: Tensor-network representation of the Clock Model

𝑒𝛽 cos(𝜃𝑖−𝜃𝑗) = 𝑉 𝑉∗
𝜃𝑖 𝜃𝑗𝑚

𝐼𝑚 = ෍

𝑛=1

𝑞

𝑒−𝑖𝑚𝜃𝑛𝑒𝛽 cos 𝜃𝑛

𝑉𝜃,𝑚 = 𝐼𝑚𝑒
𝑖𝑚𝜃/𝑞

𝑉𝑉∗ 𝜃𝑖
𝑘 ∝ 𝐼𝑖𝐼𝑗𝐼𝑘𝐼𝑙 𝛿mod 𝑖+𝑗−𝑘−𝑙,𝑞= 𝑖

𝑙

𝑗

Fourier transformation



Tensor-network representation in the dual lattice

𝜏𝑖𝑗𝑘𝑙 = 𝜆𝑖𝜆𝑗𝜆𝑘𝜆𝑙 𝛿mod 𝑖+𝑗−𝑘−𝑙,𝑞

𝜆𝑚 = 𝑒𝛽 cos 𝜃𝑚

𝜏

𝜎1 = 𝜃1 − 𝜃4
𝜎2 = 𝜃2 − 𝜃1
𝜎3 = 𝜃3 − 𝜃2
𝜎4 = 𝜃4 − 𝜃3



Tensor-network Methods for Quantum 1D/Classical 2D Systems

1. Ground state

✓ Density-matrix renormalization group (DMRG, White 1992)

✓ Simple update, time evolving block decimation (TEBD, Vidal 2004)

✓ Variational minimization of MPS (FBC, PBC)

2. Thermodynamics

✓ Transfer-matrix renormalization group (TMRG, Nishino 

coworkers/classical 2D 1995, Xiang coworkers/quantum 1D 1996)

✓ Corner transfer matrix renormalization (Nishino et al 1996)

✓ Coarse-graining tensor renormalization (TRG, SRG, HOTRG, 

HOSRG, TNR, loop-TNR)

✓ Ancilla purification approach (Verstraete et al 2004)

Thoroughly developed, most accurate quantum many-body computational methods 



Tensor-network Methods for Quantum 1D/Classical 2D Systems

3. Dynamic correlation functions

✓ Lanczos DMRG

✓ Lanczos MPS 

✓ Chebyshev MPS

✓ Correction vector method

4. Time-dependent problem

✓ Pace-keeping DMRG

✓ TEBD

✓ Adaptive time-dependent DMRG

✓ Folded transfer matrix method

5. Excitation spectra

✓ MPS ansatz of single-mode approximation 

Thoroughly developed, most accurate quantum many-body computational methods 



✓ Tensor renormalization group (TRG, Levin, Nave, 2007) 

✓ Second renormalization group (SRG, Xie et al 2009)

✓ TRG with HOSVD (HOTRG, HOSRG Xie et al 2012) 

✓ Tensor network renormalization (TNR, Evenbly, Vidal 2015)

✓ Loop TNR (Yang et al 2016)

Evolution of Coarse-Graining Tensor-Network Renormalization

• TNR and loop TNR are more accurate at the critical points

• HOTRG and HOSRG can be applied to 2D quantum and 3D classical models



Tensor-network Methods for Quantum 2D/Classical 3D Systems

Still under development, already applied to quantum spin/interacting electron models

1. Ground state: based on the PEPS/PESS ansatz

2. Thermodynamics: coarse-graining tensor renormalization

3. Excitations: single-mode approximation 

𝒙 𝒙′𝑇𝑥𝑥′𝑦𝑦′ [𝑚] = 

y'

𝒎 Physical state

Virtual state

D

Verstraete & Cirac, cond-mat/0407066 

Projected Entangled Pair State (PEPS)



Ground state: Problems need be solved

⟨𝛹 ෠𝑂 𝛹ۧ and ⟨𝛹|𝛹ۧ are each a 2D tensor-network

1. Determination of PEPS/PESS wave function 

2. Evaluation of expectation values (high cost)



➢ Simple update         Jiang, Weng, Xiang, PRL 101, 090603 (2008)

Fast and can access large D tensors

➢ Full update              Jordan et al PRL 101, 250602 (2008)

more accurate than simply update

cost high

➢ Variational minimization with automatic differentiation

Liao, Liu, Wang, Xiang, PRX 9, 031041 (2019) 

most accurate and reliable method

cost high

Determination of PEPS/PESS Wave Function



Automatic Differentiation (AD)

➢ a cute technique which computes exact derivatives, whose errors are 

limits only floating point error

➢ a powerful tool successfully used in deep learning

Computation Graph

Chain rule of differentiation



TMRG: Fixed Point MPS Method 

= Tr 𝑇𝑁
𝛹 𝑇|𝛹
𝛹 𝛹

𝑁

𝑇

=
𝑁 → ∞

Fixed point MPS equation:

Fixed gauge by left and right canonicalization



TMRG: Fixed Point MPS Method 

To determine the local 

tensor, one needs to solve 

the following equations:
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q-state Clock Model

𝐻 = −෍

⟨𝑖𝑗ۧ

cos 𝜃𝑖 − 𝜃𝑗 𝜃𝑖 =
2𝜋𝑛

𝑞
(𝑛 = 0,… , 𝑞 − 1)

dislocation

I. Halperin and D. R. Nelson, PRL. 41, 121 (1978); Phys. Rev. 8 19, 2457 (1979).

2D melting:

Understanding the nature of topological phase 

transition without symmetry breaking



Berezinskii-Kosterlitz-Thouless Transition

Thouless       KosterlitzBerezinkii

𝐻 = −෍

⟨𝑖𝑗ۧ

cos(𝜃𝑖 − 𝜃𝑗)

XY-model

Tc
BKT phase: critical

T
paramagnetic



Effective Low Energy Theory

Tc
BKT phase: critical

T
paramagnetic

𝑆 =
1

2𝜋𝐾
∫ 𝑑2𝑟 ∇𝜑 2 +

𝑔1
2𝜋

∫ 𝑑2𝑟 cos( 2𝜑)

Sine-Gordon Model:

Thouless       KosterlitzBerezinkii

𝐻 = −෍

⟨𝑖𝑗ۧ

cos(𝜃𝑖 − 𝜃𝑗)

XY-model



Scaling Dimension Δ

Tc
BKT phase: critical

T
paramagnetic

𝑆 =
1

2𝜋𝐾
∫ 𝑑2𝑟 ∇𝜑 2 +

𝑔1
2𝜋

∫ 𝑑2𝑟 cos( 2𝜑)

Sine-Gordon Model:

𝐾 > 4 free boson K < 4 non-critical

Δcos( 2𝜑) =
𝐾

2

Δ < 2 relevant

𝛥 = 2 marginal 

𝛥 > 2 irrelevant
K = 4



Central Charge c

Tc
BKT phase: critical

T
paramagnetic

𝑆 =
1

2𝜋𝐾
∫ 𝑑2𝑟 ∇𝜑 2 +

𝑔1
2𝜋

∫ 𝑑2𝑟 cos( 2𝜑)

Sine-Gordon Model:

𝐾 > 4 free boson K < 4 non-critical

Δcos( 2𝜑) =
𝐾

2

Δ < 2 relevant

𝛥 = 2 marginal 

𝛥 > 2 irrelevant
𝑐 = 1 𝑐 = 0

K = 4



q-state Clock Model: Large q Limit

𝑆 =
1

2𝜋𝐾
∫ 𝑑2𝑟 ∇𝜑 2 +

𝑔1
2𝜋

∫ 𝑑2𝑟 cos( 2𝜑) +
𝑔2
2𝜋

∫ 𝑑2𝑟 cos(𝑞 2 𝜃）

XY Model

Clock Model

P. B. Wiegmann, J. Phys. C 11, 1583(1978)

𝜽 is dual to 𝝋 ∶ 𝜕𝑥𝜑 = −𝜕𝑦 𝐾𝜃 𝜕𝑦𝜑 = 𝜕𝑥(𝐾𝜃)



q-state Clock Model: Large q Limit

Δcos( 2𝜑) =
𝐾

2

Δcos(𝑞 2𝜃) =
𝑞2

2𝐾

Δ < 2 relevant

𝛥 = 2 marginal 

𝛥 > 2 irrelevant

Scaling dimension

𝑆 =
1

2𝜋𝐾
∫ 𝑑2𝑟 ∇𝜑 2 +

𝑔1
2𝜋

∫ 𝑑2𝑟 cos( 2𝜑) +
𝑔2
2𝜋

∫ 𝑑2𝑟 cos(𝑞 2 𝜃）



q-state Clock Model: Large q Limit

Tc2
BKT phase: critical

T
paramagnetic

Δcos( 2𝜑) < 2

Δcos(𝑞 2𝜃) > 2

𝑐 = ? 𝑐 = 0

Tc1
Ferromagnetic 

𝑐 = 0

Δcos( 2𝜑) > 2

Δcos(𝑞 2𝜃) > 2

Δcos( 2𝜑) > 2

Δcos(𝑞 2𝜃) < 2

Δcos( 2𝜑) = 2Δcos(𝑞 2𝜃) = 2

𝑆 =
1

2𝜋𝐾
∫ 𝑑2𝑟 ∇𝜑 2 +

𝑔1
2𝜋

∫ 𝑑2𝑟 cos( 2𝜑) +
𝑔2
2𝜋

∫ 𝑑2𝑟 cos(𝑞 2 𝜃）

J. V. Jose, et al, PRB 16,1217(1977)



q-state Clock Model: Self-dual Point

𝑆 =
1

2𝜋𝐾
∫ 𝑑2𝑟 ∇𝜑 2 +

𝑔1
2𝜋

∫ 𝑑2𝑟 cos( 2𝜑) +
𝑔2
2𝜋

∫ 𝑑2𝑟 cos(𝑞 2 𝜃）

When K = q, g1 = g2, the model is invariant under dual transformation 

𝜑 ↔ 𝑞𝜃

At the self-dual point

Δcos 2𝜑 = Δ𝑐𝑜𝑠(𝑞 2𝜃) =
𝑞

2
→ 𝐾𝑠𝑑 = 𝑞

The self-dual point is a critical point for 𝒒 ≤ 𝟒
The self-dual point is not a critical point when 𝒒 > 𝟒



q-state Clock Model: Small q Limit

T
paramagneticTc2

BKT phase: criticalTc1
Ferromagnetic Tc

q

2

3

4

𝐓𝐜

2𝐥𝐧−𝟏(𝟏 + 𝟐)

(𝟑/𝟐)𝐥𝐧−𝟏(𝟏 + 𝟑)

𝐥𝐧−𝟏(𝟏 + 𝟐)

c

1/2 Ising, Majorana fermion

4/5 Z3 Parafermion

1 Two copies of Ising

Self-dual Point



q-state Clock Model: Intermediate q (≥ 5)

1. Is the intermediate phase still a BKT phase?

2. Can the critical temperatures and conformal parameters 

(c and K) be accurately determined?

T
paramagneticTc2

BKT phase: criticalTc1
Ferromagnetic 



➢ Marginal operators lead to strong finite 

size effect with logarithmic corrections

Spin-spin correlation function     

~  𝑟1/4 ln1/8 𝑟

J M Kosterlitz, J. Phys. C 7, 1046 (1974)

➢ Correlation length diverges exponentially 

Critical Phase is Difficult to Study

𝜉 ~e𝑎 𝑇−𝑇𝐵𝐾𝑇
−1/2

𝑇 > 𝑇𝐵𝐾𝑇
Borisenko et. al., PRE 83, 041120(2011)

Monte Carlo: Binder Ratio

q = 5

𝑈𝐿
(𝑀)

= 1 −
⟨𝑀𝐿

4ۧ

3 𝑀𝐿
2 2



Critical Temperatures



Critical Temperatures



Magnetization and Entanglement Entropy

Peak positions determine the 
critical temperatures

Tc



Magnetization and Entanglement Entropy

Tc



What is the critical q for the BKT transition?



q = 5

BKT signature: Exponentially Diverging Correlation Length

Exponential divergence of 

the correlation length 

suggests that the critical 

transition is BKT like and 

qc = 5 



Two Critical Temperatures

q=5 q=6

Correlation length    𝜉(𝐷) ~𝑒𝑎 𝑇−𝑇𝑐(𝐷)
−1/2

𝑇 − 𝑇𝑐 ∼ ln−2 𝜉



Critical Temperatures

Current work                                         0.9059 (2)         0.9521(2)       TMRG



Calabrese & Cardy, J Stat Mech (2004)

𝑆𝐸 ∼
𝑐

6
ln 𝜉

Central Charge c ~ 1

q = 5 T = 0.928

q = 6       T = 0.794

q = 7       T = 0.693

q = 8       T = 0.614

Inside the critical phase



C. M. Lapilli, et.al., PRL 96, 140603 (2006)

Thermodynamic observables are q-independent

𝑆 =
1

2𝜋𝐾
∫ 𝑑2𝑟 ∇𝜑 2 +

𝑔1
2𝜋

∫ 𝑑2𝑟 cos( 2𝜑) +
𝑔2
2𝜋

∫ 𝑑2𝑟 cos(𝑞 2 𝜃）

High-temperature Behaviors

T
0            1             2             3             4            5

irrelevant

D=250

D=250



Determination of Luttinger Parameter K

➢ K is difficult to determine, 

unknown before

➢ Critical phase described by 

compactified boson CFT of 

radius 𝑅 = 2𝐾

𝑆 =
1

8𝜋
∫ 𝑑2𝑟 ∇𝜃 2

R is related to the ratio of partition 

functions on the Klein Bottle and Torus

H.H. Tu, PRL 119, 261603 (2017)

W. Tang, et.al., PRB 99, 115105 (2019)

𝑅 =
𝑍Klein(2𝐿𝑥,

𝐿𝑦
2
)

𝑍Torus(𝐿𝑥, 𝐿𝑦)
=



Prediction of Conformal Field Theory (𝑞 → ∞)

T
paramagneticTc2

BKT phase: criticalTc1
Ferromagnetic 

𝑅(𝑇𝑐1) =
𝑞

2
𝑅(𝑇𝑐2) = 2 2

𝑅 𝑇self dual = 2𝑞



Discrepancy are mainly 

caused by the marginal 

terms

Luttinger Parameter (q=5)

𝑅(𝑇𝑐1) =
5

2

𝑅(𝑇𝑐2) = 2 2



Discrepancy are mainly 

caused by the marginal 

terms

Luttinger Parameter

𝑅(𝑇𝑐1) =
𝑞

2

𝑅(𝑇𝑐2) = 2 2



Discrepancy becomes 

smaller and smaller 

with increasing q

Luttinger Parameter at the Self-dual Point

𝑅 𝑇self dual = 2𝑞



We calculated the Luttinger parameter K of the q-state clock model 

in the critical phase for the first time, and determined accurately 

the critical temperatures and other physical quantities

Summary
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