Berezinskii-Kosterlitz-Thouless Criticality in the q-state Clock Model

Tao Xiang

txiang@iphy.ac.cn

Institute of Physics Chinese Academy of Sciences

✓ Brief introduction to the tensor-network renormalization group methods

✓ Critical properties of the q-state clock model

Road Map of Renormalization Group

Phase transition and Critical phenomena

Basic Idea of Renormalization Group

$$|\psi\rangle = \sum_{k=1}^{N_{total}} a_k |k\rangle \approx \sum_{k=1}^{N \ll N_{total}} a_k |k\rangle$$

To find a small but optimized basis set to represent accurately a quantum state

Scale transformation: refine the wavefunction by local RG transformations

Is Quantum State Renormalizable?

$$N_{\rm total} = 2^{L^2}$$

L

$$|\psi
angle = \sum_{k=1}^{N \ll N_{\text{total}}} a_k |k
angle$$

Area Law of Entanglement entropy

 $S \propto L \propto \log N$

$$N \sim 2^L \ll 2^{L^2} = N_{\text{total}}$$

How to Determine the Optimized Basis States?

Use a sub-system as a pump to probe the other part of the system

Importance is measured by the entanglement or reduced density matrix

$$\rho_{sys} = Tr_{env}e^{-\beta H}$$

reduced density matrix

Tensor-Network State

Faithful representation of partition functions of classical/quantum models

$$Z = Tr \prod_{i} T_{x_i x_i' y_i y_i'}$$

Variational wavefunctions of ground states of quantum lattice models

$$|\Psi\rangle = Tr \prod T_{x_i x'_i y_i y'_i}[m_i] |m_i\rangle$$

Example: Tensor-network representation of the Clock Model

$$H = -\sum_{\langle ij \rangle} \cos(\theta_i - \theta_j)$$

$$\theta_i = \frac{2\pi n}{q} (n = 0, \dots, q - 1)$$

q-state clock model = discretized XY-model

Example: Tensor-network representation of the Clock Model

$$e^{\beta \cos(\theta_{i}-\theta_{j})} = \underbrace{\theta_{i}}_{V} \underbrace{w}_{V^{*}} \underbrace{\theta_{j}}_{k} = \int_{n=1}^{q} e^{-im\theta_{n}}e^{\beta \cos\theta_{n}}$$
Fourier transformation
$$I_{m} = \sum_{n=1}^{q} e^{-im\theta_{n}}e^{\beta \cos\theta_{n}}$$

$$\tau_{ijkl} = i \underbrace{\eta}_{l} \underbrace{\psi_{i}}_{l} \underbrace{v}_{k} \\ = i \underbrace{\psi_{i}}_{l} \underbrace{\psi_{i}}_{l} \underbrace{v}_{k} \\ = i \underbrace{\psi_{i}}_{l} \underbrace{\psi_{i}}_{l} \underbrace{v}_{k} \\ \underbrace{v}_{l} \\ \underbrace{v}_$$

Tensor-network representation in the dual lattice

$$\sigma_{1} = \theta_{1} - \theta_{4}$$

$$\sigma_{2} = \theta_{2} - \theta_{1}$$

$$\sigma_{3} = \theta_{3} - \theta_{2}$$

$$\sigma_{4} = \theta_{4} - \theta_{3}$$

$$\tau_{ijkl} = \sqrt{\lambda_i \lambda_j \lambda_k \lambda_l} \,\delta_{\mathrm{mod}(i+j-k-l,q)}$$

$$\lambda_m = e^{\beta \cos \theta_m}$$

Tensor-network Methods for Quantum 1D/Classical 2D Systems

Thoroughly developed, most accurate quantum many-body computational methods

- 1. Ground state
 - ✓ **Density-matrix renormalization group (DMRG, White 1992)**
 - ✓ <u>Simple update</u>, time evolving block decimation (TEBD, Vidal 2004)
 - ✓ Variational minimization of MPS (FBC, <u>PBC</u>)
- 2. Thermodynamics
 - ✓ <u>Transfer-matrix renormalization group</u> (TMRG, Nishino coworkers/classical 2D 1995, Xiang coworkers/quantum 1D 1996)
 - ✓ **Corner transfer matrix renormalization** (Nishino et al 1996)
 - ✓ Coarse-graining tensor renormalization (TRG, SRG, HOTRG, HOSRG, TNR, loop-TNR)
 - ✓ Ancilla purification approach (Verstraete et al 2004)

Tensor-network Methods for Quantum 1D/Classical 2D Systems

Thoroughly developed, most accurate quantum many-body computational methods

- **3. Dynamic correlation functions**
 - ✓ Lanczos DMRG
 - ✓ Lanczos MPS
 - ✓ <u>Chebyshev MPS</u>
 - ✓ Correction vector method
- 4. Time-dependent problem
 - ✓ Pace-keeping DMRG
 - ✓ TEBD
 - ✓ Adaptive time-dependent DMRG
 - ✓ Folded transfer matrix method
- 5. Excitation spectra
 - ✓ MPS ansatz of single-mode approximation

Evolution of Coarse-Graining Tensor-Network Renormalization

- ✓ Tensor renormalization group (TRG, Levin, Nave, 2007)
- ✓ Second renormalization group (SRG, Xie et al 2009)
- ✓ TRG with HOSVD (HOTRG, HOSRG Xie et al 2012)
- ✓ Tensor network renormalization (TNR, Evenbly, Vidal 2015)
- ✓ Loop TNR (Yang et al 2016)

- TNR and loop TNR are more accurate at the critical points
- HOTRG and HOSRG can be applied to 2D quantum and 3D classical models

Tensor-network Methods for Quantum 2D/Classical 3D Systems

Still under development, already applied to quantum spin/interacting electron models

- 1. Ground state: based on the PEPS/PESS ansatz
- 2. Thermodynamics: coarse-graining tensor renormalization
- **3. Excitations: single-mode approximation**

Ground state: Problems need be solved

1. Determination of PEPS/PESS wave function

$$|\Psi\rangle = Tr \prod T_{x_i x_i' y_i y_i'}[m_i] |m_i\rangle$$

2. Evaluation of expectation values (high cost)

$$\langle \hat{O} \rangle = \frac{\langle \Psi | \hat{O} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

 $\langle \Psi | \hat{O} | \Psi \rangle$ and $\langle \Psi | \Psi \rangle$ are each a 2D tensor-network

Determination of PEPS/PESS Wave Function

Simple update

Fast and can access large D tensors

Jiang, Weng, Xiang, PRL 101, 090603 (2008)

> Full update

Jordan et al PRL 101, 250602 (2008)

more accurate than simply update cost high

> Variational minimization with automatic differentiation

Liao, Liu, Wang, Xiang, PRX 9, 031041 (2019)

most accurate and reliable method cost high

Automatic Differentiation (AD)

- > a cute technique which computes exact derivatives, whose errors are limits only floating point error
- > a powerful tool successfully used in deep learning

TMRG: Fixed Point MPS Method

Fixed point MPS equation:

Fixed gauge by left and right canonicalization

$$|\Psi\rangle = \cdots - A_L - A_L - C - A_R - A_$$

TMRG: Fixed Point MPS Method

To determine the local tensor, one needs to solve the following equations:

$$A_C[\sigma] = A_L[\sigma]C = CA_R[\sigma]$$

Second Sec

✓ Critical properties of the q-state clock model

q-state Clock Model

$$H = -\sum_{\langle ij \rangle} \cos(\theta_i - \theta_j)$$

$$\theta_i = \frac{2\pi n}{q} (n = 0, \dots, q - 1)$$

Understanding the nature of topological phase transition without symmetry breaking

Berezinskii-Kosterlitz-Thouless Transition

Effective Low Energy Theory

Scaling Dimension Δ

Sine-Gordon Model:

$$S = \frac{1}{2\pi K} \int d^2 r (\nabla \varphi)^2 + \frac{g_1}{2\pi} \int d^2 r \cos(\sqrt{2} \, \varphi)$$

$$K > 4$$
 free boson
 $K < 4$ non-critical

 Image: Constraint of the second state of the

Central Charge c

Sine-Gordon Model:

$$S = \frac{1}{2\pi K} \int d^2 r (\nabla \varphi)^2 + \frac{g_1}{2\pi} \int d^2 r \cos(\sqrt{2} \, \varphi)$$

q-state Clock Model: Large q Limit

$$\theta$$
 is dual to φ : $\partial_x \varphi = -\partial_y (K\theta)$ $\partial_y \varphi = \partial_x (K\theta)$

P. B. Wiegmann, J. Phys. C 11, 1583(1978)

q-state Clock Model: Large q Limit

$$S = \frac{1}{2\pi K} \int d^2 r (\nabla \varphi)^2 + \frac{g_1}{2\pi} \int d^2 r \cos(\sqrt{2} \varphi) + \frac{g_2}{2\pi} \int d^2 r \cos(q\sqrt{2} \theta)$$

Scaling dimension

$$\Delta_{\cos(\sqrt{2}\varphi)} = \frac{K}{2}$$
$$\Delta_{\cos(q\sqrt{2}\theta)} = \frac{q^2}{2K}$$

 $\Delta < 2$ relevant

 $\Delta = 2$ marginal

 $\Delta > 2$ irrelevant

q-state Clock Model: Large q Limit

$$S = \frac{1}{2\pi K} \int d^2 r (\nabla \varphi)^2 + \frac{g_1}{2\pi} \int d^2 r \cos(\sqrt{2} \varphi) + \frac{g_2}{2\pi} \int d^2 r \cos(q\sqrt{2} \theta)$$

q-state Clock Model: Self-dual Point

$$S = \frac{1}{2\pi K} \int d^2 r (\nabla \varphi)^2 + \frac{g_1}{2\pi} \int d^2 r \cos(\sqrt{2} \varphi) + \frac{g_2}{2\pi} \int d^2 r \cos(q\sqrt{2} \theta)$$

When K = q, $g_1 = g_2$, the model is invariant under dual transformation

 $\varphi \leftrightarrow q\theta$

At the self-dual point

$$\Delta_{\cos(\sqrt{2}\varphi)} = \Delta_{\cos(q\sqrt{2}\theta)} = \frac{q}{2} \to K_{sd} = q$$

The self-dual point is a critical point for $q \le 4$ The self-dual point is not a critical point when q > 4

q-state Clock Model: Small q Limit

q	T _c	С	
2	$2\ln^{-1}(1+\sqrt{2})$	1/2	Ising, Majorana fermion
3	$(3/2)\ln^{-1}(1+\sqrt{3})$	4/5	Z ₃ Parafermion
4	$\ln^{-1}(1+\sqrt{2})$	1	Two copies of Ising

q-state Clock Model: Intermediate q (\geq 5)

- 1. Is the intermediate phase still a BKT phase?
- Can the critical temperatures and conformal parameters (c and K) be accurately determined?

Critical Phase is Difficult to Study

Marginal operators lead to strong finite size effect with logarithmic corrections

Spin-spin correlation function

 $\sim r^{1/4} \ln^{1/8} r$

J M Kosterlitz, J. Phys. C 7, 1046 (1974)

Correlation length diverges exponentially

 $\xi \sim e^{a|T - T_{BKT}|^{-1/2}} \qquad T > T_{BKT}$

Critical Temperatures

q = 5	T_{c1}	T_{c2}	Method
Tobochnik, et.al., PRB(1982)	0.8	1.1	MC
Borisenko, et.al., PRE(2011)	0.905(1)	0.951(1)	MC
Kumano, et.al., PRB(2013)	0.908	0.944	HTSE
Chatelain, et.al., $JSM(2014)$	0.914(12)	0.945(17)	DMRG
Chatterjee, et.al., PRE(2018)	0.897(1)	-	MC
Chen, et.al., $CPB(2018)$	0.9029(1)	0.9520(1)	HOTRG
Surungan, et.al., arXiv(2019)	0.911(5)	0.940(5)	MC
Seongpyo, et.al., arXiv(2019)	0.908	0.945	HOTRG

Critical Temperatures

q = 6	T_{c1}	T_{c2}	Method
Tobochnik, et.al., PRB(1982)	0.6	1.3	MC
Challa, et.al., $PRB(1986)$	0.68(2)	0.92(1)	MC
Yamagata, et.al., $JPA(1991)$	0.68	0.90	MC
Tomita, et.al., $PRB(2002)$	0.7014(11)	0.9008(6)	MC
Hwang, et.al., $PRE(2009)$	0.632(2)	0.997(2)	MC
Brito, et.al., $PRE(2010)$	0.68(1)	0.90(1)	MC
Baek, et.al., $PRE(2013)$	-	0.9020(5)	MC
Kumano, et.al., $PRB(2013)$	0.700(4)	0.904(5)	HTSE
Krcmar, et.al., arXiv(2016)	0.70	0.88	CTMRG
Chen, et.al., $CPL(2017)$	0.6658(5)	0.8804(2)	HOTRG
Chatterjee, et.al., $PRE(2018)$	0.681(1)	-	MC
Surungan, et.al., $arXiv(2019)$	0.701(5)	0.898(5)	MC
Seongpyo, et.al., arXiv(2019)	0.693	0.904	HOTRG

Magnetization and Entanglement Entropy

Peak positions determine the critical temperatures

Magnetization and Entanglement Entropy

What is the critical q for the BKT transition?

BKT signature: Exponentially Diverging Correlation Length

$$\xi \sim e^{a|T-T_c|^{-1/2}} \quad \to \quad (T-Tc) \sim \ln^{-2}\xi$$

Two Critical Temperatures

Correlation length
$$\xi(D) \sim e^{a|T-T_c(D)|^{-1/2}}$$
 $T - T_c \sim \ln^{-2} \xi$

Critical Temperatures

q = 5	T_{c1}	T_{c2}	Method
Tobochnik, et.al., PRB(1982)	0.8	1.1	MC
Borisenko, et.al., PRE(2011)	0.905(1)	0.951(1)	MC
Kumano, et.al., PRB(2013)	0.908	0.944	HTSE
Chatelain, et.al., $JSM(2014)$	0.914(12)	0.945(17)	DMRG
Chatterjee, et.al., PRE(2018)	0.897(1)	-	MC
Chen, et.al., $CPB(2018)$	0.9029(1)	0.9520(1)	HOTRG
Surungan, et.al., arXiv(2019)	0.911(5)	0.940(5)	MC
Seongpyo, et.al., $arXiv(2019)$	0.908	0.945	HOTRG
Current work	0.9059 (2)	0.9521(2)	TMRG

Central Charge c ~ 1

High-temperature Behaviors

Thermodynamic observables are q-independent

C. M. Lapilli, et.al., PRL 96, 140603 (2006)

Determination of Luttinger Parameter K

- K is difficult to determine,
 unknown before
- Critical phase described by compactified boson CFT of

radius $R = \sqrt{2K}$

$$S = \frac{1}{8\pi} \int d^2 r (\nabla \theta)^2$$

R is related to the ratio of partition functions on the Klein Bottle and Torus

$$R = \frac{Z^{\text{Klein}}(2L_x, \frac{L_y}{2})}{Z^{\text{Torus}}(L_x, L_y)} = -$$

H.H. Tu, PRL 119, 261603 (2017) W. Tang, *et.al.*, PRB 99, 115105 (2019)

Prediction of Conformal Field Theory $(q \rightarrow \infty)$

Luttinger Parameter (q=5)

 $R(T_{c2}) = 2\sqrt{2}$

Discrepancy are mainly caused by the marginal terms

Luttinger Parameter

 $R(T_{c2}) = 2\sqrt{2}$

 $R(T_{c1}) = \frac{q}{\sqrt{2}}$

Discrepancy are mainly caused by the marginal terms

Luttinger Parameter at the Self-dual Point

$$R(T_{\text{self dual}}) = \sqrt{2q}$$

Discrepancy becomes smaller and smaller with increasing q

Summary

We calculated the Luttinger parameter *K* of the q-state clock model in the critical phase for the first time, and determined accurately the critical temperatures and other physical quantities

Haijun Liao IOP, CAS

Hong-Hao Tu Technische Univ Dresden

Zi-Qian Li Univ of CAS

Zhiyuan Xie Renmin Univ China

Liping Yang Chongqing Univ